

GM.8.003290.EN 13.06.2016 0.10 1

Code

Date

Page

Version

EN

Translation of the Original Operating Instructions

WITTUR Holding GmbH

Rohrbachstraße 26-30 • D-85259 Wiedenzhausen, Germany Tel. +49 (0) 81 34/18-0 • Fax +49 (0) 81 34/18-49 http://www.wittur.com, E-mail: info@wittur.com

Reprinting, translation or reproduction in any form – whether in part or in full – requires the prior written permission of WITTUR Holding GmbH.

Wittur Holding GmbH reserves the right to make changes in the information and pictures contained in these operating instructions without prior notice.

Subject to changes without notice !

Subject to changes without notice !

GM.8.003290.EN 13.06.2016 0.10 2

These operating instructions are applicable to lift machines:

WITTUR Electric Drives GmbH reserves the right to correct or change the contents of this manual and these product details without prior notice. We expressly reserve the right to make technical changes which improve the lift machines or their safety standards without prior notice. No liability can be accepted for damage, injuries or expense arising therefrom. We cannot guarantee the correctness and completeness of the details.

Offenburger Str. 3 D-01189 Dresden Germany

Drives GmbH

Tel. +49-(0) 3 51-40 44-0 +49-(0) 3 51-40 44-1 11 Fax

info.wed@wittur.com www.wittur-edrives.de ΕN

Code

Date

Page

Version

Subject to changes without notice !

GM.8.003290.EN 13.06.2016 0.10 3

Code

Date

Page

Version

Contents

1.		
	1.1. About this operating manual	
	1.2. Intended use	
	1.3. Scope of delivery 1.4. Warranty and liability	
n	Safety instructions	
2.	2.1. General	
	2.2. Format of the safety instructions	
	2.3. Safety precautions	
3.	Product overview	6
	3.1. Product description	
	3.2. Transport and storage	
	3.3. Disposal	
4.	Installation	
	4.1. Setting up 4.2. Electrical connection	
	4.2. Electrical connection	
	4.2.2. Motor connection / Winding protection / Fan	
	4.2.3. Speed/Position measuring system	
	4.2.4. Brake	
5.	Commissioning	
5. 6.	Operation and maintenance	17
0.	Operation and maintenance	17 17
0.	Operation and maintenance 6.1. General 6.2. Maintenance intervals	17 17 17
0.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings	17 17 17 18
0.	Operation and maintenance 6.1. General 6.2. Maintenance intervals	17 17 18 18
0.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation	17 17 18 18 18 18 19
0.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81	17 17 18 18 18 18 19 20
0.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system	17 17 18 18 18 18 19 20 21
6.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system 6.9. Trouble shooting	
 6. 7. 	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system 6.9. Trouble shooting	
 6. 7. 8. 	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system 6.9. Trouble shooting Type code Technical data	17 17 18 18 18 18 20 21 22 23 24
6.7.8.9.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system 6.9. Trouble shooting Type code Dimension drawing	17 17 17 18 18 18 19 20 21 21 23 24 25
6.7.8.9.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system 6.9. Trouble shooting Type code Dimension drawing Accessories	17 17 17 18 18 18 19 20 21 21 23 24 24 25 26
6.7.8.9.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system 6.9. Trouble shooting Type code Dimension drawing 10.1. Connecting cable for measuring systems	17 17 17 18 18 18 19 20 21 23 23 24 25 26
6.7.8.9.	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system 6.9. Trouble shooting Type code Technical data Dimension drawing 10.1. Connecting cable for measuring systems 10.2. Cable set for motor and brake	
 6. 7. 8. 9. 10. 	Operation and maintenance 6.1. General 6.2. Maintenance intervals 6.3. Regreasing the bearings 6.4. Replacing the traction sheave 6.5. Filter mats 6.6. Emergency evacuation 6.7. Testing the brake system to EN 81 6.8. Replacing the measuring system 6.9. Trouble shooting Type code Dimension drawing 10.1. Connecting cable for measuring systems	

Annex

EU Declaration of Conformity Calculation of the traction sheave shaft Traction sheave shaft EU type-examination certificate EU-BD 881 Brake operating instructions

13.06.2016 0.10 4

General information 1.

1.1. About this operating manual

The purpose of this operating manual is to ensure that any work on WSG-S2 lift machines is carried out safely. Please regard it as part of the product and keep it within easy reach.

All persons working on or with WSG-S2 lift machines must have read and understood this operating manual.

1.2. Intended use

WSG-S2 lift machines are intended for use as gearless drives for rope lifts. They may only be used for their intended purpose and with all safety devices in proper working order.

They may only be operated under the conditions described in this manual and with due regard to their performance limits.

1.3. Scope of delivery

The WSG-S2 lift machines are customised to meet individual requirements. The exact scope of delivery can be found in the accompanying documentation.

1.4. Warranty and liability

Our "Conditions of Sale and Delivery" shall apply for all our supplies and services. Any warranty claims must be made immediately upon discovery of the deficiency or defect. We do not accept any warranty or liability claims for personal injury or property damage resulting from one or more of the following causes

- Improper use of the WSG-S2 lift machine
- Improper installation, commissioning, operation or maintenance
- Operation of the WSG-S2 with defective and/or inoperative safety or protective devices
- Non-compliance with the instructions contained in the operating manual or other documentation supplied
- Unauthorised construction modifications to the WSG-S2
- Insufficient monitoring of parts subject to wear
- Repairs carried out improperly
- Emergencies caused by external forces or force majeure

Safety instructions 2.

2.1. General

WSG-S2 lift machines are not ready-to-use products; they may only be operated after they have been installed in lift systems and their safe operation has been ensured by taking the appropriate measures.

WSG-S2 lift machines are intended for use in an enclosed, lockable operating area to which only gualified personnel and personnel authorised by the customer have access.

Code G Date Version Page

GM.8.003290.EN 13.06.2016 0.10 5

Qualified personnel

Only qualified personnel are authorised to perform any planning, installation or maintenance work, and this must be done in accordance with the relevant instructions. The personnel must be trained for the job and must be familiar with the installation, assembly, commissioning and operation of the product.

2.2. Format of the safety instructions

The safety instructions contained in this operating manual are presented in a standardised format.

They comprise a **danger symbol + signal word + instruction text**. The danger symbol indicates the type of danger, the signal word specifies the severity of the danger, and the instruction text describes the danger and explains how to avoid it.

Danger symbols

Risk of electric shock	STOP	Property damage
General danger	i	Information

Signal words

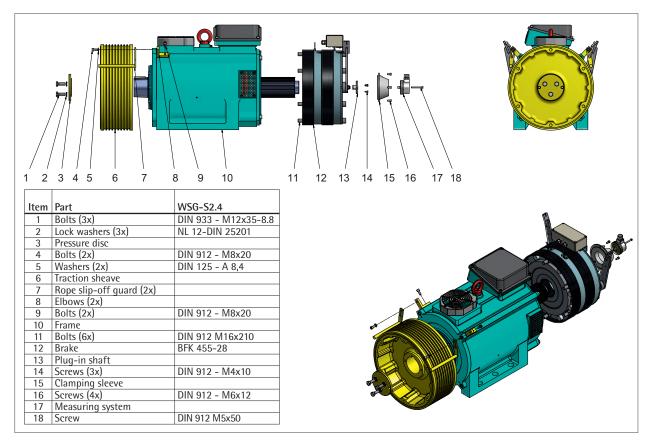
- **Danger** Serious injuries or death will result
- Warning Serious injuries or death may result.
- **Caution** Minor to moderate injuries may result.
- **Notice** Property damage may result.
- Information Points out useful information.

2.3. Safety precautions

- Check the proper functioning of the motor and the brake after installing the machine.
- Repairs may only be carried out by the manufacturer or an authorised repair agency. Unauthorised opening and tampering may result in injuries to persons and property.
- The machines are not designed for direct connection to the three-phase system but are to be operated via an electronic frequency inverter. Direct connection to the mains may damage the motor beyond repair.
- High surface temperatures may occur on the external parts of the machine. Therefore, no temperature-sensitive parts may be in contact with these parts or attached to them. Protection against accidental contact should be provided, if required.
- The EU type-examined fail-safe brakes provided are designed only for a limited number of emergency braking operations. They must not be used as working brakes.
- If the motor is not energised, no torque is produced. This may result in uncontrolled acceleration of the lift, if the brakes are released. Therefore, the motor winding should be short-circuited to produce a speed-dependent braking torque while the motor is not supplied with current. (Use the main contacts for short-circuiting as rated motor current may be flowing.) The motor must never be short-circuited while it is energised.
- High voltages are present at the terminal connections during the operation of synchronous motors.

Code Date Version Page GM.8.003290.EN 13.06.2016 0.10 6

3. Product overview


3.1. Product description

The compact gearless WSG-S2.4 synchronous lift machines are designed for traction sheave lifts. They are distinguished by their high efficiency, extremely low noise and excellent operating characteristics. The machines can be supplied for several rated speeds.

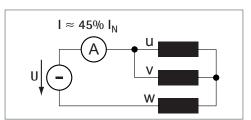
The machine comprises a frame, the synchronous motor, the traction sheave, and the typetested safety brake, which can be used to prevent uncontrolled upward movement of the car.

The nameplate of the lift machine is on the motor frame.

Subject to changes without notice !

GM.8.003290.EN 13.06.2016 0.10 7

3.2. Transport and storage


- The lift machines leave the factory in perfect condition after being tested.
- Make a visual check for any external damage immediately upon their arrival on site. If any damage is found to have occurred in transit, make a notice of claim in the presence of the carrier. If appropriate, do not put these machines into operation.
- Observe the relevant safety regulations and take the centre of gravity into account when handling the lift machines.
- Check that the eyebolts are tightly fitted before using them.
- Do not expose the motor to any shocks or impact.

The eyebolts are designed for the specified machine weight, i.e. additional loads must not be applied. Danger of breakage!

Storage

- Store the motors only in closed, dry, dust-free, well-ventilated and vibration-free rooms (storage temperature: -20°C to 60°C). Do not store lift machines in the open air. Bright parts are not sufficiently preserved to withstand extended periods of exposure.
- Avoid excessive storage periods (recommendation: max. one year).
- After prolonged storage (>3 months), rotate the motor in both directions at a low speed (< 20 min⁻¹) to allow the grease to distribute evenly in the bearings.
- Measure the insulation resistance before initial operation of the machine. If the value has dropped below 1kΩ per volt of rated voltage, the winding needs to be dried (insulation meter voltage: 1,000 V DC).
- This can be done, for instance, with hot air, in a drying oven, or by applying a DC voltage to the motor connections. Make sure that the voltage selected does not exceed the values shown in the figure "Drying the winding". Let the temperature rise to about 70 80°C and maintain it for several hours.

Drying the winding

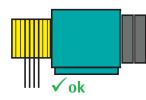
Unpacking

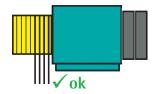
- Dispose of the packaging material in an environmentally friendly manner or reuse it.
- Any special transport aids or shipping braces are left with the customer.

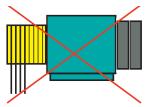
3.3. Disposal

- The lift machines consist of different materials. A waste separation of those different material components has to be done.
- The disposal must be professional and environmentally friendly according to law.

Code Date Version Page GM.8.003290.EN 13.06.2016 0.10 8


4. Installation


4.1. Setting up



Be sure to use calculations to check the base frame or foundation loads before installing the lift machine.

- The machines can be used in lift systems with or without a machine room
- The permissible uneveness of the mounting surface is 0.1 mm. The mounting surface must be sufficiently distortion-resistant and stable to accommodate the forces occurring in the system.
- The rope force can be applied to the lift machine in any direction
- The machine must be mounted on vibration dampers for vibration damping
- No welding work may be performed on the lift machine, nor is it permissible to use the machine as a mass point for welding work. This might cause irreparable damage to the bearings and magnets.
- If there are more grooves on the traction sheave than the number of ropes used, position the ropes either in the centre of the traction sheave or towards the motor end.

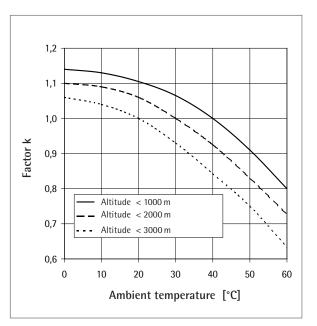
• The measuring system is only accessible from the rear side. Therefore, leave enough space between the wall and the rear side of the machine or ensure that the machine can be moved away from the wall.

Cover the machine and especially the brakes when doing any machining or dust-producing work in the shaft or machine room.

Securing the machine

- Fasten the machine using bolts
 - 4 x M 24 bolts (strength class 8.8; tightening torque: 680 Nm) in case of using the threaded holes or - 6 x M 24 bolts (strength class 8.8; tightening torque: 680 Nm) in case of using the mounting holes.
- After completing the adjusting work or after a breakdown, tighten all the fastening bolts of the machine, using the specified torque .
- Lift machines are generally equipped with rope slip-off guards. After putting the ropes in place, adjust them so that the distance between the rope and the rope slip-off guard does not exceed 1.5 mm.
- If the lift machine is not installed at the head of the machine room as is usually the case, it may be necessary to modify the fitting of the rope slip-off guard to fulfill the requirements of EN 81-20. Optional rope slip-off guards are available for this purpose.

When using the machine in a shaft, please take into account the patent situation.


Code GM 8.003290 FN Date Version Page

9

Ambient conditions

- The following ambient conditions must be ensured on site
 - Altitud: max. 1,000 m a.s.l. Ambient temperature: -5°C ... 40 °C Max. rel. humidity: 85% at 20°C (no moisture condensation)
- Install the machine so that ventilation is not obstruct, • ed, i.e. sufficient heat dissipation by convection and radiation must be ensured.
- The torque and power values indicated in the technical data apply to the above ambient temperatures and altitudes. In the case of a deviating altitude and/or temperature, the reduction factors k shown in the diagram "Ambient conditions" must be used.

$$M_{permiss} = k * M_N$$

 $P_{permiss} = k * P_N$

4.2. Electrical connection

4.2.1. General

Warning

The electrical connection may only be made by a qualified electrician.

- Before starting any work on the machines, ensure that the lift machine or system is properly isolated. Before making any electrical connections check that
- the connecting cables are suitable for their specific application and for the relevant voltages and currents.
- sufficiently dimensioned connecting cables, torsion, strain and shear relief, as well as anti-kink protection are provided
- the protective conductor is connected to the earthing terminal
- there are no foreign bodies, dirt or moisture in the terminal boxes
- cable entries not in use and the terminal box itself are tightly sealed to prevent the ingress of dust or splashing water.

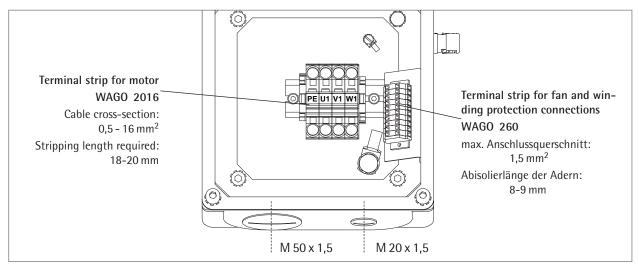
The insulation system of the motors is designed such that they can be connected to a inverter with a maximum DC link voltage $\mathrm{U}_{\mathrm{link}\,\mathrm{max}}$ up to max. 700 V DC.

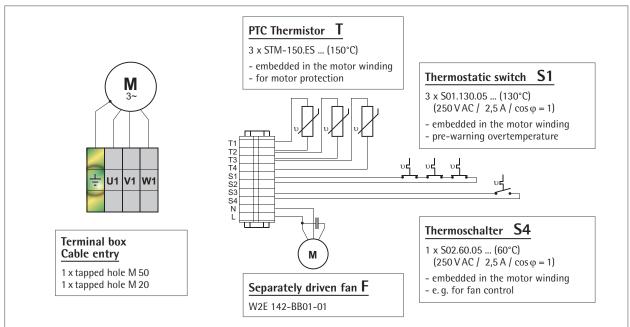
 $U_{link max}$ is the maximum value of the DC link voltage which is only transient and approximately equivalent to the inception voltage of the braking chopper or of the energy recovery unit.

The maximum permissible rate of voltage rise (dU/dt) at the motor terminals is $4kV/\mu s$. The overvoltage at the motor terminals must not exceed 1.56 kV. It may be necessary to use motor current filters or reactors to achieve these values.

10

Code Date


Version


Page

ΕN

4.2.2. Motor connection / Winding protection / Fan

- The electrical connection of the motor, the fan and the winding sensors is made in the terminal box located on the motor.
- The motor cable must be shielded. Ensure that the cable shield contacts the frame over a large area at both ends.
- The motor phases U1, V1 and W1 must be connected correctly to the corresponding phases of the inverter; they must not be interchanged.
- We recommend using a inverter with a switching frequency of 12 kHz.
- The thermocouples installed in the winding such as PTC resistor detectors and thermostatic switches must be evaluated in the control system or the frequency inverter to protect the motor from overheating.
- The separately driven fan must be properly connected and operated. If required, it can be switched in dependence of the temperature by means of thermal switch S4 (relay must be used).

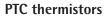
safety in motion[™] =

Code

Date

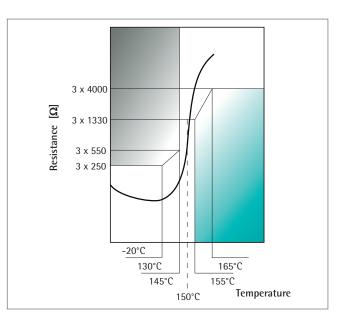
Page

ΕN


Cable cross-section required:

The currents specified under the machine data refer to duty type S3-40%. This must be taken into account when selecting the cable cross-section required. The continuous r.m.s. value required for the selected cable is approximated from:

I _{r.m.s.} (cable). ≈ I _{N (motor, S3-40%)} / 1,58


The table on the right gives the standard values for the current-carrying capacity of PVC cables at a maximum ambient temperature of 40°C.

Cable cross- section required	Permissible max. current (r.m.s. value)	Permissible max. motor current I _N (S3 - 40%)
1.0 mm ²	13.1 A	20.7 A
1.5 mm ²	15.7 A	24.8 A
2.5 mm ²	22.6 A	35.7 A
4.0 mm ²	29.6 A	46.7 A
6.0 mm ²	38.3 A	60.5 A
10.0 mm ²	53.1 A	83.9 A

The maximum operating voltage of the PTC thermistors is not allowed to exceed 25 V DC !

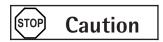
To achieve the maximum precision, the measurement voltage per PTC thermistor must not exceed 2.5 V DC.

Short-circuiting the motor terminals

- The motor terminals of the synchronous lift machines, type WSG, can be short-circuited, if required, to brake the lift machine faster.
- However, this is only permissible at speeds less than or equal to the rated speed of the respective motor.

Code GM.8.003290.EN Date 13.06.2016 Version Page

0.10


12

WSG-S2.4 **Operating Instructions**


Gearless Lift Machine

4.2.3. Speed/Position measuring system

- The basic version of the lift machines is equipped with an sendix 8.5873 SineCosine encoder from Kübler GmbH. The encoder is connected by cable (length: 10m) with open wire ends (no plug).
- Alternatively, the machines can be equipped with ECN 413 or ERN 487 encoders (from Heidenhain GmbH). We can also provide other measuring systems on request.
- Use a shielded cable to connect the Heidenhain measuring systems to the inverter system. We recommend the use of our cable sets, which can be supplied as an accessory.

The measuring system of WSG lift machines with a synchronous motor (WSG) is matched to the associated inverter. Do not change the adjustment, as this may make it impossible to use the motor. On the measuring system housing there is a label showing the "offset angle" and the inverter type.

The offset angle depends on the inverter used.

Measuring system Sendix 8.5873

Number of sine-cosine periods per rotation: 2048 Operating voltage: 5 V Data interface: BISS

Core	Signal
white	0 V (Up)
brown	U _n
green	Clock +
yellow	Clock -
grey	DATA +
pink	DATA -
blue	SET
red	DIR
black	A +
violet	A -
grey-pink	В +
red-blue	В -
shield	shield

Measuring system ECN 413

Number of sine-cosine periods per rotation: 2048 Operating voltage: 5 V Data interface:: SSI or ENDAT

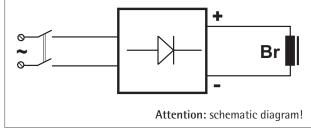
Signal	
U _n Sensor	
0 V Sensor	
U _p	$\left(\begin{array}{c} \\ \\ \end{array} \right)$
Clock +	
Clock -	
0 V (U _p)	
inner shield	
В +	
В -	
DATA +	
A +	Pin contacts of flanged con- nector socket (exterior)
A -	nector socket (exterior)
DATA -	
	$U_n Sensor$ $0 V Sensor$ U_p $Clock + Clock - 0 V (U_p)$ inner shield $B + Clock + 0 V (U_p)$ inner shield $A + Clock + 0 V (U_p)$

Code Date Version Page GM.8.003290.EN 13.06.2016 0.10 13

4.2.4. Brake

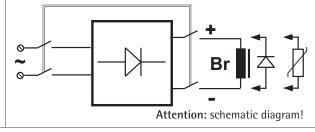
i

- Refer also to the operating instructions for the brake.
- The brakes are supplied with DC voltage by the overexcitation rectifiers, which are supplied separately or in the terminal box.
- Only the overexcitation rectifiers which are included in our scope of supply are to be used for the brake activation.
- Repeated switching of the brake magnets during the overexcitation period must be avoided as this will result in overloading of the brake control unit. Therefore, a minimum brake operating time of approx. 1.5 2 s should be maintained, especially during an inspection or commissioning drive.
- To reduce the switch-off time, switching can be effected from the DC side. However, switching must also be performed from the AC side at the same time ! (Wiring with a varistor as shown in the circuitry suggestion on page 15!)


Note on the use of DC/AC side switching:

AC side switching is recommended for normal operation, since the lift machine is then decelerated in a controlled manner to zero speed and the switching noise of the brake is negligible.

When braking in the event of a breakdown (emergency stop) or during an inspection drive, the switching should be performed from the DC side, since this ensures a faster braking effect with the car being stopped earlier. We therefore recommend the use of 2 separate contactors for the brake control circuitry, one of which switches at the DC side, the other at the AC side.


AC side switching

- Low-noise switching of the brake
- No protective measures required for switching contact
- Slow application of the brake.

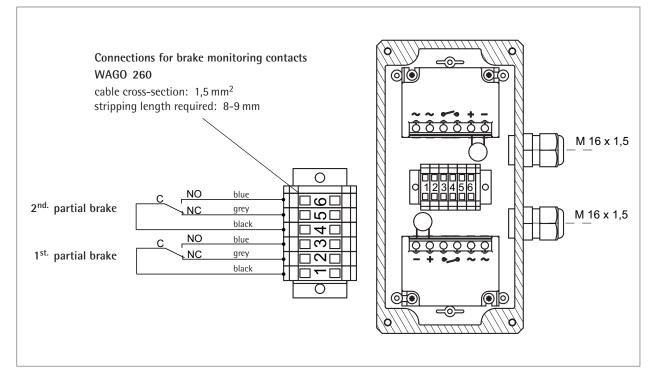
DC side switching

- Noisy switching
- Burn-up protection for switching contact required (e.g. varistor, free-wheeling diode)
- Fast application of the brake.

Code G Date Version Page

GM.8.003290.EN 13.06.2016 0.10 14

Monitoring the brakes

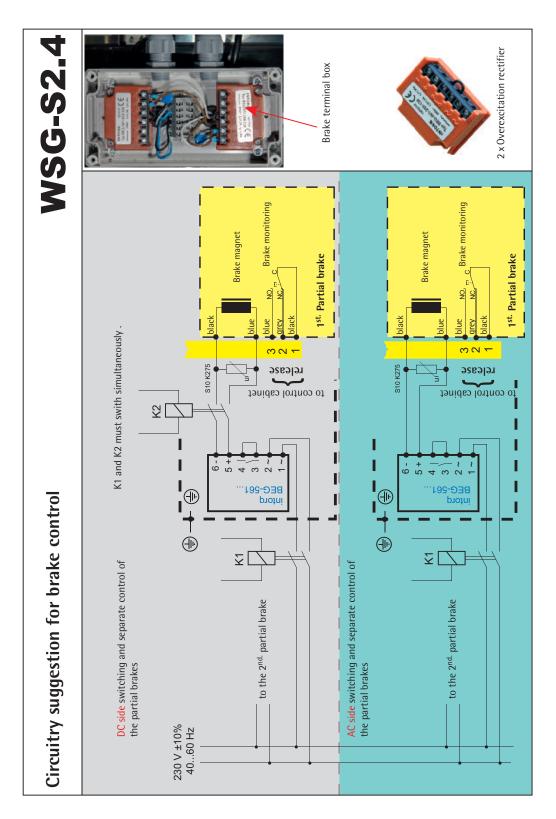

• The switching states of the brakes are monitored by means of dust-proof microswitches with gold contacts. Both the n.c. and the n.o. contact connections are available.

The microswitches must be evaluated separately for each partial brake to ensure compliance with the requirements of the type examination.

Connection of the brakes

The brake solenoids, the brake control units and the monitoring contacts are connected to the mains in the brake terminal box.

GM.8.003290.EN
13.06.2016
0.10
15


Code Date

Version

Page

ΕN

Circuitry suggestion for brake control WSG-S2.4

safety in motion[™] =

Code G Date Version Page

GM.8.003290.EN 13.06.2016 0.10 16

5. Commissioning

The following points should be checked or completed:

- Check that all performance and application data specified on the name plate of the machine are consistent with your application.
- Have all securing, auxiliary and installation tools been removed from the danger area?
- Check that the lift machine is being used for its intended purpose comply with the permissible ambient conditions.
- Check that the lift machine has been properly fastened with the fastening bolts have the bolts been tightened to the specified torque and secured?
- Has the motor been properly connected, including the motor protection? Has the PE terminal been properly connected? Is the potential equalisation with the machine frame ensured?
- Check the proper functioning of the temperature monitoring devices (e.g. by interrupting the temperature monitoring circuit).
- Check the brake connection and the proper functioning of the brake monitoring switches.
- Ensure that the brake operates correctly; perform a brake test using one partial brake.
- Has the measuring system been properly connected?
- Check that the offset value indicated on the measuring system agrees with the value set on the inverter.
- Is the rope slip-off guard properly tightened and adjusted?

An initial function test of the motor and the brake, together with the inverter, should be performed before the ropes are put in place.

If the motors are being operated at no shaft load (no ropes put in place) for an extended period of time, abnormal noise may occur resulting from the bearing type used

Half-load test

If the motor winding is short-circuited with the control system deactivated, a speed-dependent braking torque will be produced, even at low speeds. Therefore, the short-circuiting should be deactivated during the half-load test. It is imperative for it to be reactivated after the test.

0.10

17

GM.8.003290.EN 13.06.2016

Code Date

Version

Page

Gearless Lift Machine WSG-S2.4 **Operating Instructions**

Operation and maintenance 6.

6.1. General

- The regulations concerning operation, maintenance and inspection pursuant to the applicable safety regulations for lift construction such as DIN EN 81-20, DIN EN 81-50, LD 2014/33/EU and other relevant regulations are to be strictly observed.
- The operator is responsible for ensuring that the motor is installed properly and in accordance with the safety requirements, as well as for its inspection and maintenance as specified in the applicable regulations.
- The proper maintenance of gearless lift machines requires adequately trained specialist personnel and special devices and tools.
- Repairs other than those described in these operating instructions are not to be carried out by the lift fitter/maintenance technician for liability reasons.

Bolt/screw tightening torques

- When performing any work on the machine or replacing parts, make sure that the specified bolt/screw strength class and the tightening torques are observed (see table).
- Secure the bolts/screws with "omnifit 100" or a similar product against accidental loosening.

Dimension	Tightening torque [Nm]								
Strength class	8.8	10.9	12.9						
M4	2,8	4,1	4,8						
M5	5,5	8,1	9,5						
M6	9,6	14	16						
M8	23	34	40						
M10	46	67	79						
M12	79	115	135						
M16	195	290	340						
M20	395	560	660						
M24	680	970	1150						

6.2. Maintenance intervals

Check the brake air gap	every six months	see the brake operating instructions			
Check the proper functioning of the brakes and the brake monitoring switches	every six months see the brake operating instruc				
Check the bearing noise	every six months				
Regrease the bearings	see section 6.3				
Check the traction sheave for wear	every six months				
Make a visual check of the fasteningbolts/screws on the frame, brake and traction sheave	every six months	see section 6.1.			
Check the electrical cables	every six months	see section 4.2.			
Check the rope slip-off guard	every six months				
Check the guards and safety devices for their condi- tion and safe functioning	every six months				
Clean the external machine surfaces; clean the fan filter mats	as required	see section 6.5.			

Code Date

Version

Page

ΕN

18

6.3. Regreasing the bearings

The anti-friction bearings have been provided with a grease filling at the factory that is sufficient for the planned service life of the machine. Under normal operating conditions, regreasing is not required or recommended.

6.4. Replacing the traction sheave

Warning

The traction sheave can work loose if it is not properly installed.

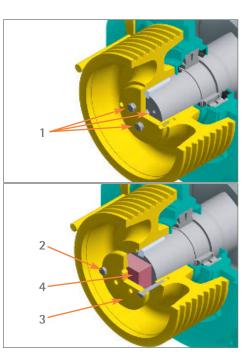
Necessary tools

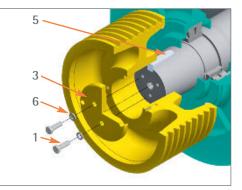
- Hoisting equipment • Torque wrench (M 12)
- Spacer (4 ... 7 mm) • Cleaning cloth

Disassembly

- Disconnect the system and safeguard against accidental restarting.
- Secure the car and the counter-weight.
- Remove the rope slip-off guards and the rope guards, if provided.
- Relieve the load on the traction sheave; remove the ropes.
- Support the traction sheave by means of a hoisting gear.
- Remove the three M 12 bolts (1) at the pressure disc and the pressure disc itself.
- Insert two fastening bolts (2) into the outer hole circle of the pressure disc (3) and into the traction sheave.
- Insert a spacer (4) between the pressure disc and the shaft iournal.
- Pull off the traction sheave from the tapered shaft seats by tightening the bolts evenly.

Assembly


- Clean the traction sheave and the motor shaft.
- Support the traction sheave by means of a hoisting gear.
- Insert the feather key (5) into the shaft end.
- Slide the traction sheave onto the motor shaft.
- Fit the pressure disc (3) to the traction sheave and fasten it using three pairs of NORD-LOCK washers (6) and M 12 bolts (1). Tighten the bolts alternately around the circle in three torque steps (30, 60 and 85 Nm) as far as they will go. Tightening torque: 85Nm
- Replace the ropes and reinstall the rope slip-off guard.

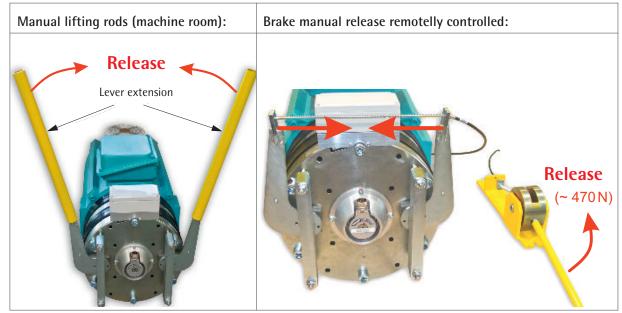

6.5. Filter mats

Remove the two screws from the protective screen. Then remove the screen and filter to clean or replace the filter mats.

Do this work only with the fan switched off as the rotating fan wheel could be dangerous.

Code GM.8.0 Date 1 Version Page

GM.8.003290.EN 13.06.2016 0.10 19


6.6. Emergency evacuation

All actions for evacuation in case of emergency have to be done by qualified service personnel.

Manually operated evacuation in case of emergency

- The brakes can be opened manually by using the lifting levers (option)
- Two different options can be chosen (shown in the following pictures):

- Is the brake opened manually, the cabin moves in the direction of the higher weight. In case of balance, the cabin has to be weighted down with suitable additional mass.
- The motor winding has to be short-circuited via the motor contactors. With the short circuit the motor creates a brake torque, which is dependent on the motor speed. This prevents an uncontrolled acceleration of the elevator.
- It is possible that the brake torque which is created by the motor short circuit is not enough to limit the speed of the elevator. Therefore the cabin speed has to be observed carefully during the evacuation and if needed, the evacuation has to be stopped.
- When the cabin has reached the next floor, the manually opened brake is closed again. The rescue of the trapped persons in the cabin can begin.

When the evacuation is finished, the initial state has to be restored. Especially the lever extensions have to be removed.

Electrically operated evacuation in case of emergency

- The electrical opening of the brakes is done using the power grid or an UPS.
- The operating instructions of the controller, the inverter or the evacuation unit with UPS have to be followed!

Code GM. Date Version Page

GM.8.003290.EN 13.06.2016 0.10 20

6.7. Testing the brake system to EN 81

The brake system should be tested with the car about halfway down the shaft. If any motor short-circuit connections have been made, these should be deactivated so that the brake effect can be tested independently.

Overload

• The brake system should be tested by interrupting the power supply to the motor and brake system with the car moving downward at rated speed and 1.25 times the rated load. The brake system must be capable of decelerating the car.

Failure of a brake

- If one brake fails, the brake system must still be capable of decelerating the car sufficiently during its downward travel at rated load and rated speed.
- When simulating the failure of one brake, the other brakes must be kept open separately, even if the safety circuit is open. This should be done using suitable electric circuitry or by hand.
- This state must not be maintained in the long term!
- Observe the lift during this test. If it does not decelerate, close the open brake circuit immediately.

Separate operation of the individual brakes

• The only method by which the partial brakes can be released separately is through electrical control. The brakes can be activated/deactivated quickly using individual control buttons.

Monitoring the brakes

• Check the brake monitoring switches individually. No car travel must be permitted if a microswitch signal is missing or a wrong signal operates.

GM.8.003290.EN 13.06.2016 0.10 21

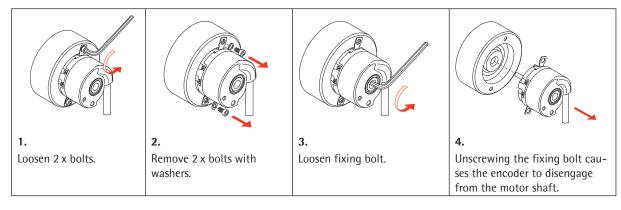
Code

Date

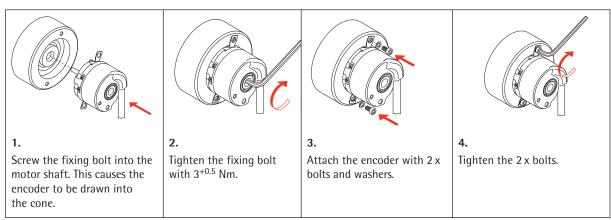
Page

Version

6.8. Replacing the measuring system


The measuring system is only accessible from the rear side of the motor.

See the mounting instructions for the Kübler encoder.


Disassemble the measuring system only if this is necessary because of a defect. Remember to readjust the offset value after reassembly (see the inverter operating instructions).

Disassembly

Assembly

safety in motion[™] =

Code

Date

Page

Version

EN

6.9. Trouble shooting

Fault	Possible cause	Remedy
Motor does not start, operates out of control or develops no torque	 Motor not connected in proper phase sequence 	Connect motor correctly
	 Measuring system not properly connected 	Connect measuring system correctly
	• Inverter parametrisation incorrect	 Check inverter parametrisation
	• EMC disturbance	• Carry out shielding and earthing mea- sures as described by the inverter man- ufacturer
	 Measuring system offset angle in- correctly set 	Check measuring system offset angle
	 Measuring system defective 	 Replace measuring system
Motor noise	Bearing defective	 Notify customer service
	• Inverter parametrisation incorrect	Check inverter parametrisation
Braking system does not release	• Braking system is not supplied with voltage	Check electrical connection
	 Brake magnet voltage too low 	 Check braking voltage supply voltage
	 Brake shoes mechanically blocked 	 Remove mechanical blocking
	• Overexcitation rectifier defective	 Replace overexcitation rectifier
Delay in braking system release	Overexcitation rectifier defective	Replace overexcitation rectifier
Braking system does not engage	 Brake shoe mechanically blocked 	 Remove mechanical blocking
Delay in engaging of braking system	• Switch-off time too short with AC side switching	• Brake control using DC side switching of the overexcitation rectifier
Brake makes loud switching noise	 DC side switching of the brake in "normal operation" 	 Change over to brake control by AC side switching in "normal operation"
	• Brake air gap too large	 Adjust brake air gap
Braking torque too low	• Brake friction surface or brake lin- ings dirty.	Clean friction surface / brake linings
	 Foreign bodies between friction surface and brake lining 	Remove foreign bodies
	• Brake friction surface or brake lin- ing have come into contact with oily or greasy materials	 Replace brake lining, clean brake drum thoroughly
	Load torque too high	Reduce load torque

Subject to changes without notice !

safety in motion[™] =

Subject to changes without notice !

GM.8.003290.EN
13.06.2016
0.10
23

Code Date

Version

Page

ΕN

7. Type code

Example:	W	S	G-	S2		4	-	0	E	19	1	3 T I	-	D F
	W	S	G-	S2	·	4	-	X1	X2	X3 X4	1	X5 X6 X7	-	X8 X9
Customer sj dentifier	pecific													
S = Synchro	onous m	otor												
G = gearles: U = gearles: Frame size		5A approv	ved											
Overall leng	gth:													
X1: Custom	ier spec	ific ident	ifier											
X2: Motor E: serie of 500	"ECO", s		r inver	ter su	ıppl	/ US	ing c	a link voltage	2					
	nin-1 (wi nin-1 (wi	ith D _T = 32 ith D _T = 32	0 mm	V =	1.0 r	n/s;	susp	pension 2:1) ension 2:1) pension 2:1)						
X5 X6 X7: T (Traction					ove (desig	gn, g	roove geome	etry)					
DE: dual- HE: dual- DF: dual-	-curcuit (-curcuit (-curcuit (-curcuit (brake; mea brake; mea brake with brake; mea	asuring asuring manu asuring	g syst g syst ial rei g syst	tem tem leas tem	Sen ECN e; m ECN	dix 8 413 easu 413	8.5873-2048 -2048 incr ıring system	ns) Inkr. – BISS–Int SSI-interface ECN 413–2048 ENDAT-interfa	3 incr. – SSI in	terfac	re		

Code	GM.8
Date	
Version	
Page	

EN

Technical data 8.

Duty type:	S3 - 40 % ED
Traction sheave:	dia. 320 mm or dia. 400 mm
Traction sheave hard- nesse:	mind. 220 HB 30 formbeständige Keilrille HRC 55
Typical number of carry- ing ropes and dia.:	8 x dia. 8 mm; 9 x dia. 10 mm
DE bearing:	self-aligning roller bearing
NDE bearing:	ball bearing
Permissible shaft load:	up to 45 kN
Drive motor:	synchronous motor
Number of pole pairs:	8
Thermal class:	155 (F)
Degree of protection:	IP 33
Overload capability:	1.9-fold (I _{max} /I _N)
Winding protection:	triple PTC 150°C triple therm. switch (NC contact)130°C therm. switch (NO contact) 60°C
Site conditions	
Max. altitude:	max. 1,000 m (derating required at higher altitudes)
Ambient temperature:	-5°C +40°C
Max. rel. humidity:	85 % at 20°C (no moisture cendensation)

(no moisture cendensation)

Dual-circuit fail-safe brake							
Туре:	BFK 455-28						
Max. braking torque:	2 x 1200 Nm						
Air gap s _B :	0,4 ^{± 0,05} mm (new air gap)						
Max. air gap s _{B max} :	0,7 mm						
Holding voltage:	103 V DC						
Holding current:	2 x 1.06 A						
Overexcitation voltage:	205 V DC						
Overexcitation current:	2 x 2.12 A						
Brake control units							
Туре:	BEG-561-255-130 from Intorq GmbH (accessories)						
Operating voltage:	$U_N = 230 \text{ VAC} (\pm 10 \%)$, 40 60 Hz						
Dimensions:	52 x 22 x 38 (w x h x l)						
Brake monitoring contact	<u>ts</u>						
Contact rating:	12 - 30 V DC / 0,01 - 0,1 A						
Min. contact current:	10 mA						
Mechanical life of contacts:	2 x 10 ⁶ switching operations						
Separately driven fan							
Туре:	W2E 142-BB01-01						
Operating voltage:	230 V / 50/60 Hz						
Current consumption:	0,12/0,13 A						

*) Reference values. Achievable nominal load depends on specific lift system data.

The table is applicable to an overall shaft efficiency of approx. 73..85% (counterweight: 50%). It lists a standard selection of machines. The lift and project data will be adapted to actual site conditions and may deviate from the above values.

motor		WSG-S2.4					
torque S3-40%, 240 S/h	M _N [Nm]	900					
max. torque	M _{max} [Nm]		1700				
traction sheave	ØD _T [mm]		320			400	
for loads *)	Q [kg]		up to 1600 up to 1275				
suspension		table applies for 2:1					
	v [m/s]	n _N [rpm]	P _N [kW]	I _N [A]	n _N [rpm]	P _N [kW]	I _N [A]
	0,5	60	5,7	18,0	48	4,5	18,0
Motor currents applicable to 500 620 V DC link	0,63	75	7,1	21,0	60	5,7	18,0
voltage (<u>serie "ECO"</u>)	1,0	119	11,2	29,5	95	9,0	24,5
	1,6	191	18,0	46,0	153	14,4	38,0
	1,75	209	19,7	46,0	167	15,7	38,0
	2,0				191	18,0	46,0

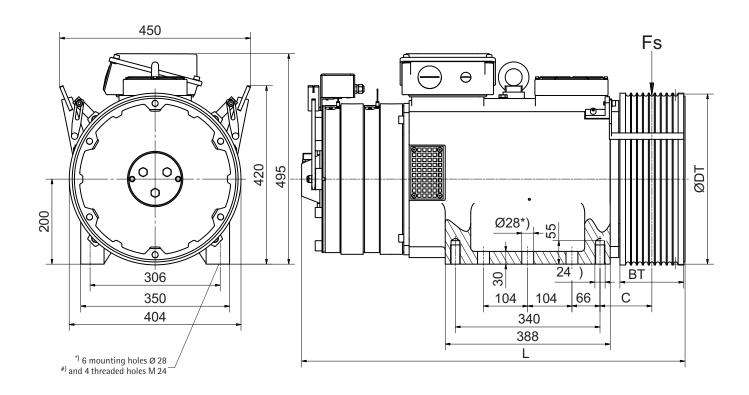
Subject to changes without notice !

safety in motion[™] =

Subject to changes without notice !

Code Date

Version


Page

Gearless Lift Machine WSG-S2.4 Operating Instructions

GM.8.003290.EN 13.06.2016 0.10 25

ΕN

9. Dimension drawing

motor	WSG-	S2.4			
	ØD _τ	32	320		00
	B _T		120	105	150
	L			857	902
	С	100	107	100	122
weight	m _G [kg]	445	447	460	474
inertia	J_{G} [kgm ²]	1,03	1,06	1,62	2,06
shaft loads up to	F _s [kN]		4	5	

GM.8.003290.EN 13.06.2016 Version

Code Date

Page

10. Accessories

10.1. Connecting cable for measuring systems

Inverter type	recom. encoder system	recommended measurement system cable
E-Pack Arkel ARCODE	ECN 413 (EnDat / SSI)	503 325 021 xx
D-Pack Arkel ADrive CT unidrive SP	ECN 413 (EnDat / SSI)	502 452 021 xx
emotron/ Dietz DSV 5445	ECN 413 (EnDat / SSI)	501 112 022 xx
Fuji Frenic	ECN 413 (EnDat)	502 679 022 xx
KEB F5	ECN 413 (EnDat)	502 363 022 xx
LTi DRiVes Lust CDD 3000	ECN 413 (SSI)	505 677 022 xx
RST Elektronik FRC	ECN 413 (EnDat)	508 752 022 xx
GEFRAN (SIEI) AVY-L-M	ERN 487	503 499 022 xx
Vacon NXP	ECN 413 (EnDat)	503 289 021 xx
Yaskawa/ Omron L7 Telemecanique/ Schneieder Altivar 71	ECN 413 (EnDat)	503 715 022 xx
Ziehl-Abegg 2SY/3BF	ECN 413 (EnDat / SSI)	508 749 022 xx

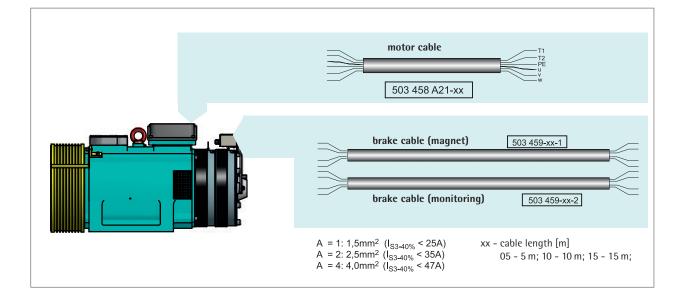
xx... cable length [m]

safety in motion[™] =

0.10

26

Code


Date

Page

Version

EN

10.2. Cable set for motor and brake

GM.8.003290.EN 13.06.2016 0.10 28

ΕN

10.3. Brake manual release

As an option the brake is available with a manual release. Brake with or without manual release as specified with the order. No possibility for retrofit !

The necessary manual release lever including the Bowden cable for releasing can be delivered, if required.

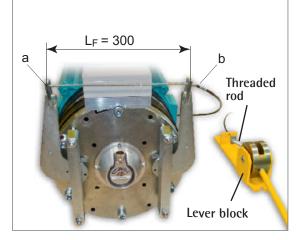
The standard length of the Bowden cable is 3 m. Other lengths on request.

Installation:

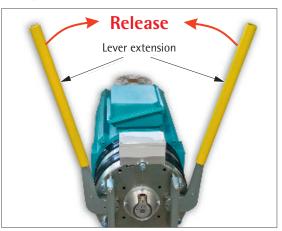
Install the manual brake releasing device with the brake disconnected from the power supply.

- Lock the car and the counterweight. Ensure that the required safety measures are observed for the lift system.
- Install the lever block.
- Insert the Bowden cable into the brake lever (a and b) and the lever block . Adjusting of the Bowden cable on the lever block. Set $L_F = 300 \text{ mm}$ on the lever block with the assistance of threaded rod. Do not actuate the lever block !
- Perform a functional test (at least three times).

The Bowden cable has to be installed in wide arcs only (bending radius > 0.5 m, if possible). Put no loops !



Code


Date

Page

Version

Alternatively, another simple version of the manual releasing device is available for lifts with a machine room.

Subject to changes without notice !

GM.8.003290.EN 13.06.2016 Version 0.10 29

Code

Date

Page

11. Spare parts

Item	Part	Description
<u>Motor</u>		
01	traction sheave	acc. machine nameplate type code X5 X6 X7
02	Measuring system (depending on spec.)	ECN 413 / SSI / 2048 incr. / clamping ring ECN 413 / ENDAT / 2048 Inkr. / clamping ring ERN 487 / 2048 Inkr. / clamping ring
Brake sys	stem	
04	Overexcitation rectifier	BEG-561-255-130
05	Micro switch (brake monitoring)	ET 37 74 210 0807
06		

EU-Konformitätserklärung EU Declaration of Conformity

im Sinne der EU-Richtlinie Niederspannung (2014/35/EU) as defined by the EU Low Voltage Directive (2014/35/EU)

Der Hersteller The manufacturer

WITTHR

WITTUR Electric Drives GmbH Offenburger Straße 3 D-01189 Dresden Deutschland / Germany

erklärt hiermit, dass die folgenden Produkte certifies that the following products

Produktbezeichnung: Product designation:	
Asynchronmotoren Asynchronous motors	DSI 1, DSI 3
Synchronmotoren Synchronous motors	DSI 2, DSI 4, DGI 4, DUI 4, DGI 6, DUI 6, WSG, KI 8, TI 8
Sondermotoren Custom-made motors	4HX, 6PX, QPX

den Bestimmungen der EU-Richtlinie 2014/35/EU entsprechen. are in conformity with the specification of the EU Directive 2014/35/EU.

Erklärung zur EMV-Richtlinie (2014/30/EU)

Bei Netzbetrieb an sinusförmiger Wechselspannung erfüllen die Motoren die Anforderungen der EU-Richtlinie "Elektromagnetische Verträglichkeit" 2014/30/EU unter Berücksichtigung der Normen EN 61000-6-1..4.

Statement relating to EMC Directive (2014/30/EU)

When connected to a sinus-shaped a.c. voltage system, the motors conform to the requirements of the EC Directive "Electromagnetic compatibility" 2014/30/EU, including those specified in standards EN 61000-6-1...4.

Folgende Normen sind angewandt:

The following standards are in use:

 EN / IEC 60 204-1: Sicherheit von Maschinen; Elektrische Ausrüstung von Maschinen; Teil 1: Allg. Anforderungen Safety of machinery - Electrical equipment of machines. Part 1: General requirements
 EN / IEC 60 034: Drehende elektrische Maschinen Rotating electrical machines
 EN ISO 12 100: Sicherheit von Maschinen - Allgemeine Gestaltungsleitsätze, Risikobeurteilung und Risikominimierung Safety of machinery - General principles for design, risk assessment and risk reduction

Dresden, 2016-06-02

(Ort, Datum) (Place, date) Markus Weber Geschäftsführer Managing Director

1.0 Steffen Mann

Leiter Entwicklung/Konstruktion Head of Development/Construction

Report on the review of calculation documents

Mehr Sicherheit. Mehr Wert.

Customer:	WITTUR Electric Drives GmbH Offenburger Strasse 3 01189 Dresden	
Subject of inspec- tion:	Traction sheave shaft for lift machines, types xSG-S2.4	
Inspection order:	Review of the traction sheave shaft calculation	
Specification:	DIN 743 Shafts and axles; calculation of load capacity	Datum: 17.10.2013 Unsere Zeichen: IS-FT1-DRE/Dmü Dokument: xSG-S2.4_1200_en.docx
Scope:	 Review of the calculations to ensure compliance with the specification Review of the calculation results Review of the calculation documents to ensure compliance with the data in the drawings 	Das Dokument besteht aus 2 Seiten. Seite 1 von 2
Inspector:	DiplIng. Thoralf Mührel Technical Expert	

Aufsichtsrat: Karsten Xander (Vorsitzender) Geschäftsführer: Ferdinand Neuwieser (Sprecher), Dr. Ulrich Klotz, Thomas Kainz Telefon: +49 351 4202-213 Telefax: +49 351 4202-242 www.tuev-sued.de/is TÜV SÜD Industrie Service GmbH Standort Dresden Abteilung Fördertechnik Drescherhäuser 5d 01159 Dresden Deutschland

1. Calculation documents

The following technical documents were to be reviewed:

- Calculation documents S2_4FE12013.DOC pages 1 to 5 dated 09/10/2013, incl. Annexes 1.
- Drawing no. 512 719 (Revision Äm 150/12, 05/06/2012).

2. Technical data

The data which are of relevance to the calculation are specified as follows in the calculation document S2_4FE12013.DOC:

-	max. shaft load (center traction sheave):	45.0 kN
	max. magnetic pull:	0.8 kN
-	load torque:	1700.0 Nm
-	emergency brake torque:	2400.0 Nm
-	traction sheave weight:	52.0 kg
-	rotor weight:	101.3 kg
-	brake weight:	10.0 kg

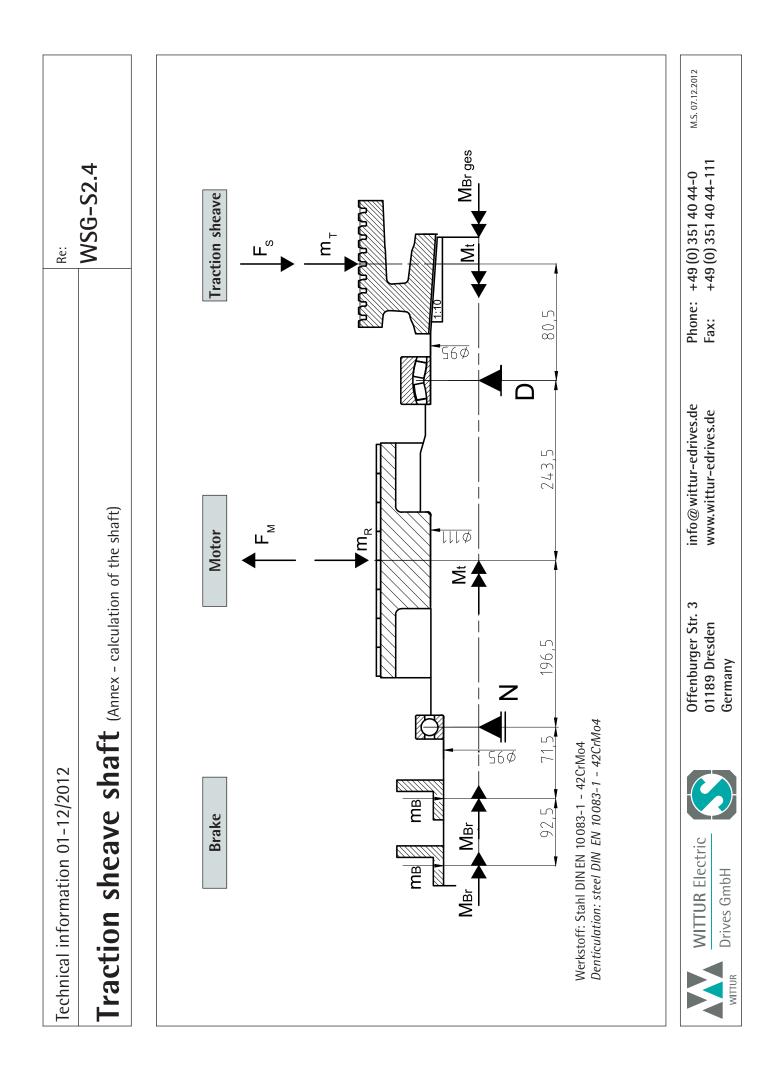
3. Results of the review

The calculations submitted were drawn up in compliance with the specification.

The values determined in the safety verification calculation were confirmed by performing a control calculation.

The data in drawing no. 512 719 comply with the values relevant for the calculation.

4. Comments


The review did not cover verification of the rotor hub/shaft, traction sheave/shaft and key shrink fits, or of the bearing life.

The Inspector

ul liner

Thoralf Mührel

EU TYPE-EXAMINATION CERTIFICATE

According to Annex IV, Part A of 2014/33/EU Directive

Certificate No.:

Certification Body of the Notified Body:

Certificate Holder:

Manufacturer of the Test Sample: (Manufacturer of Serial Production – see Enclosure)

Product:

EU-BD 881

TÜV SÜD Industrie Service GmbH Westendstr. 199 80686 Munich - Germany Identification No. 0036

INTORQ GmbH & Co. KG Wülmser Weg 5 31855 Aerzen - Germany

INTORQ GmbH & Co. KG Wülmser Weg 5 31855 Aerzen - Germany

Braking device acting on the shaft of the traction sheave, as part of the protection device against overspeed for the car moving in upwards direction and braking element against unintended car movement

The safety component conforms to the essential health and safety requirements of the mentioned Directive as long as the requirements of the

Type:

Directive:

Reference Standards:

Test Report:

Outcome:

outcomo

Date of Issue:

2016-03-18

BFK455-28

2014/33/EU

EN 81-20:2014

EN 81-50:2014

EN 81-1:1998+A3:2009

EU-BD 881 of 2016-03-18

Date of Validity:

from 2016-04-20

dustrie Se Werner Rau

annex of this certificate are kept.

Certification Body "lifts and cranes"

1 Scope of application

- 1.1 Use as braking device part of the the protection device against overspeed for the car moving in upwards direction permissible brake torque and tripping rotary speed
- 1.1.1 Permissible brake torque when the braking device acts on the shaft of the traction sheave while the car is moving upward

Permissible brake torque (Nm)	Maximum tripping rotary speed of the traction sheave (rpm)
2 x 1200 = 2400	
2 x 1700 = 3400	455
2 x 1800 = 3600	455
2 x 2065 = 4130	

1.1.2 Maximum tripping speed of the overspeed governor and maximum rated speed of the lift

The maximum tripping speed of the overspeed governor and the maximum rated speed of the lift must be calculated on the basis of the traction sheave's maximum tripping rotary speed as outlined below taking into account traction sheave diameter and car suspension.

	v	=	Tripping (rated) speed (m/s)
V =	D _{TS}	=	Diameter of the traction sheave from rope's center to rope's center (m)
DTS x π x n	π	=	3,14
60 x i	n	=	Rotary speed (rpm)
	i	=	Ratio of the car suspension

1.2 Use as braking element – part of the protection device against unintended car movement (acting in up and down direction) – permissible brake torque, tripping rotary speed and characteristics

1.2.1 Nominal brake torque and response times with relation to a brand-new brake element

Nominal brake torque* [Nm]	Maximum tripping rotary speed [rpm]	Maximum response times** [ms] with / without overexcitation			Brake control [parallel or se- rial]	Overexcitat ion at [x- fold non-release voltage]
		t ₁₀	t ₅₀	t ₉₀		
2 x 1200 = 2400	255	160 / 197	214 / 252	267 / 306	parallel	2-fold
2 x 1200 = 2400	455	189 / 207	290 / 295	390 / 382	serial	1,43-fold
2 x 1700 = 3400	455	61 / 73	123 / 136	184 / 199	parallel	2-fold
2 x 1800 = 3600	455	59 / 70	110 / 122	160 / 174	parallel	2-fold
2 x 2065 = 4130	255	89 / 108	158 / 177	226 / 247	parallel	2-fold

Explanations:

* Response times:

Brake torque assured for installation operation by the safety component manufacturer.

 t_X time difference between the drop of the braking power until establishing X% of the nominal brake torque, t_{50} optionally calculated t_{50} = $(t_{10}+\,t_{90})/2$ or value taken from the examination recording

1.2.2 Assigned execution features

Type of powering / deactivation Nominal air gap Damping elements continuous current / continuous current end 0.45 mm YES

^{*} Nominal brake torque:

2 Conditions

- 2.1 Above mentioned safety component represents only a part at the protection device against overspeed for the car moving in upwards direction and unintended car movement. Only in combination with a detecting and triggering component in accordance with the standard (two separate components also possible), which must be subjected to an own type-examination, can the system created fulfil the requirements for a protection device.
- 2.2 The installer of a lift must create an examination instruction to fulfil the overall concept, add it to the lift documentation and provide any necessary tools or measuring devices, which allow a safe examination (e. g. with closed shaft doors).
- 2.3 The manufacturer of the drive unit must provide calculation evidence that the connection traction sheave shaft brake disc and the shaft itself is sufficiently safe, if the brake disc is not a direct component of the traction sheave (e. g. casted on). The shaft itself has to be statically supported in two points.

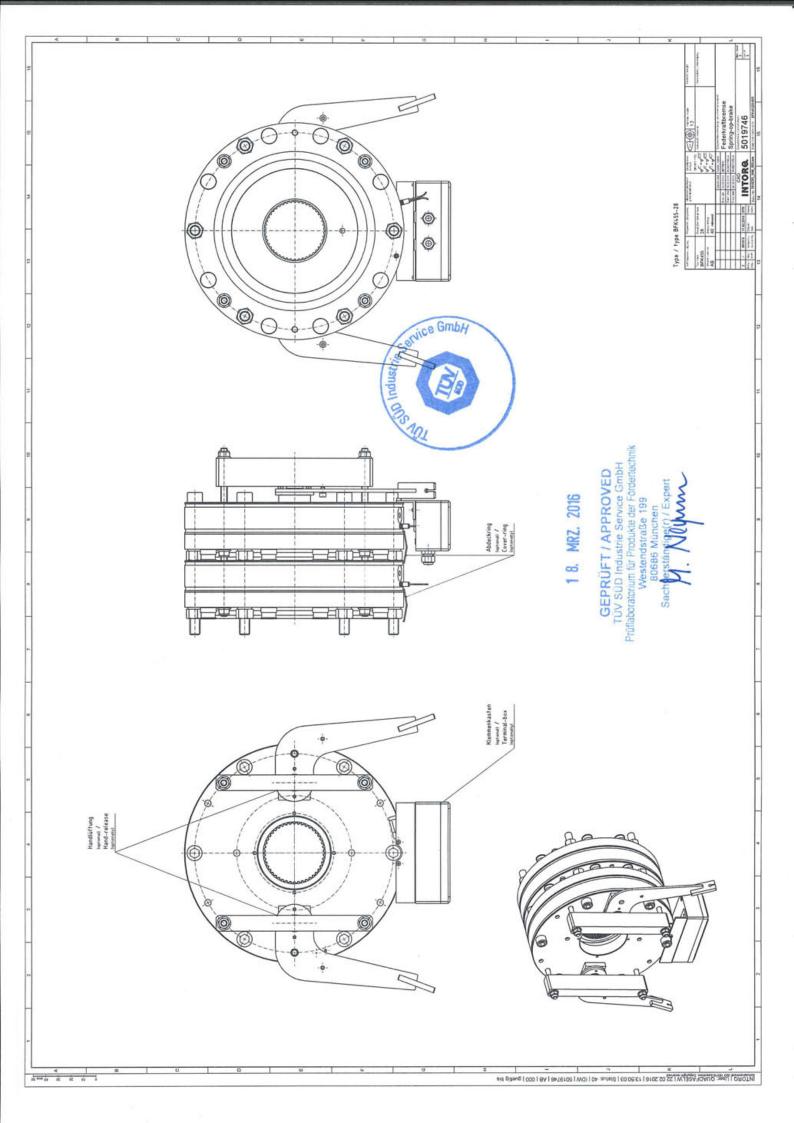
The calculation evidence must be enclosed with the technical documentation of the lift.

- 2.4 The setting of the brake torque has to be secured against unauthorized adjustment (e. g. sealing lacquer).
- 2.5 The identification drawing no. 5018294 or 5019746 including stamp dated 2016-03-18 shall be included to the EU type-examination for the identification and information of the general construction and operation and distinctness of the approved type.
- 2.6 The EU type-examination certificate may only be used in combination with the corresponding annex and enclosure (List of authorized manufacturer of the serial production). The enclosure will be updated immediately after any change by the certification holder.

3 Remarks

- 3.1 In the scope of this type-examination it was found out, that the brake device also functions as a brake for normal operation, is designed as a redundant system and therefore meets the requirements to be used also as a part of the protection device against overspeed for the car moving in upwards direction and as braking element as part of the protection device against unintended car movement.
- 3.2 Checking whether the requirements as per section 5.9.2.2 of EN 81-20:2014 (D) have been complied with is not part of this type examination.
- 3.3 Other requirements of the standard, such as reduction of brake moment respectively brake force due to wear or operational caused changes of traction are not part of this type examination.
- 3.4 This EU type-examination certificate was issued according to the following standards:
- EN 81-1:1998 + A3:2009 (D), Annex F.7 and F.8
- EN 81-20:2014 (D), part 5.6.6.11, 5.6.7.13
- EN 81-50:2014 (D), part 5.7 and 5.8
- 3.5 A revision of this EU type-examination certificate is inevitable in case of changes or additions of the above mentioned standards or of changes of state of the art.

Enclosure to the EU Type-Examination Certificate No. EU-BD 881 of 2016-03-18

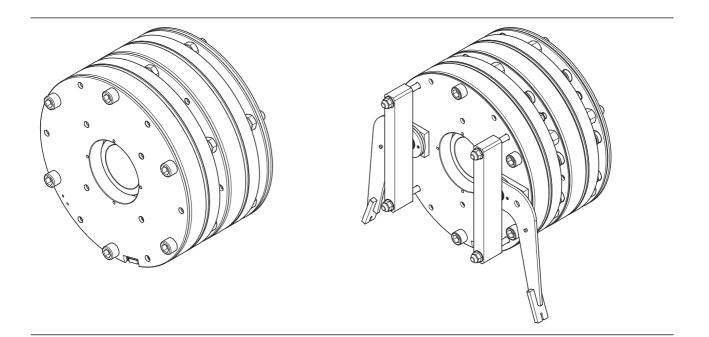


Authorised Manufacturer of Serial Production – Production Sites (valid from: 2016-03-18):

Company	INTORQ GmbH & Co. KG
Address	Wülmser Weg 5
	31855 Aerzen – Germany

INTORQ (Shanghai) Co., Ltd.
No. 600, Xin Yuan Nan Road
Building no.6 / Zone B
Nan Hui District, Lingang
201306 Shanghai - P.R. China

- END OF DOCUMENT -


INTORQ BFK455-28

Electromagnetically Released Spring-Applied Brake Translation of the Original Operating Instructions

www.intorq.com

INTORQ

This documentation applies to the:

Product key

	INTORQ	В	FK	
A				
B				
C				
D				

Legend for the product key

INTORQ BFK455

Α	Product group	Brakes
В	Product type	Spring-applied brake
С	Туре	455
D	Size	28

Not coded: Supply voltage, hub bore, options

Identification

Packaging label			Example
Manufacturer		Type number	INTORQ DAERZEN 33000224
Type (see product key)		Bar code	Typ: BFK455-28 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Designation		Oty par box	0036 / EU-BD 881 Rostschutzverpackung - Reibfläche fettfrei halten!
Rated/holding voltage	Rated torque	Qty. per box	
Rated/holding power	Hub diameter	Packaging date	_
Model identification		CE mark	_
Note			

Name plate			Example	
Manufacturer		– CE mark	INTORQ D-31855 Aerzen, Wülmser Weg 5 BFK455-28 0036 / EU-BD 881	
Type (see product key)	EC-type examination identification		205/205 V DC 434/434 W 80 H7 Nr.: 33000224 1800/1800 NM 18.03.16	CE
Rated/holding voltage	Rated/holding power	Hub diameter		
Type number	Rated torque	Date of manufacture		

Label product traceability	Example	
Type (see product key)		Product Traceability
Type number	QR-Code	BFK455-28 33000224
Serial number		1000061653
Manufacturer		31855 Aerzen DE

Notes

The brake is marked with the following labels, which have to be observed:

for the holding voltage	for setting the air gap		
Lüftspannung Release voltage: 205 V DC Haltespannung: Holding voltage: 103 V DC Nur mit BEG-561-255-130 betreiben! Only use with BEG-561-255-130! Nr./No. 33000224	 DE: Den nach der Erstinstallation eingestellten Luftspalt nicht verstellen! EN: Do not re-adjust the air-gap after the first installation! FR: Ne plus regler l'entrefer après la première installation! 		

Document history

Material number	Version			Description
33000756	1.0	05/2011	TD09	First edition
33000756	1.1	05/2012	TD09	Change in telephone and fax number Front and back page new Addition of the EC type test number Supplemented by chapter "Project planning notes" Supplemented by chapter "Wear of spring-applied brakes"
33002468	2.0	03/2013	TD09	Amended by new chapter on manual release installation Tables of dimensions and switching times were changed Supplement for spare parts list and the spare parts order
33002468	3.0	04/2013	TD09	Limitation of the adjustability Note on the suppressor circuit added to the "Electrical installation" chapter Values for characteristic torque 2x2065 Nm added to "Dimensions" table
33002468	4.0	01/2015	SC	Restructured FM
33002468	4.1	11/2015	SC	Changing the model identification test numbers
33002468	5.0	04/2016	SC	Updates Changing the model identification test numbers

Contents

1	Preface and general information	
	1.1 About these Operating Instructions	
	1.2 Terminology used	
	1.3 Conventions in use	
	1.4 Abbreviations used	7
	1.5 Safety instructions and notices	
	1.6 Scope of delivery	
	1.7 Disposal	
	1.8 Drive systems	
	1.9 Legal regulations	
2	Safety instructions	
-	2.1 General safety instructions	
	2.2 Application as directed	
2		
3	Technical specifications 3.1 Product description	
	3.4 Switching energy / switching frequency3.5 Emissions	
4	Mechanical installation	
	4.1 Important notes	
	4.2 Necessary tools	
	4.3 Assembly	
	4.4 Installation	
	4.5 Manual release	
	4.6 Cover ring assembly	
5	Electrical installation	
	5.1 Important notes	
	5.2 Bridge/half-wave rectifier (optional)	
	5.3 Electrical connection	
6	Commissioning and operation	
	6.1 Important notes	
	6.2 Function checks before commissioning	
	6.3 Commissioning	
	6.4 During operation	
7	Maintenance and repair	42
•	7.1 Wear of spring-applied brakes	
	7.2 Inspections	
	7.3 Maintenance	
	7.4 Spare-parts list	
	7.5 Ordering spare parts	
8	Troubleshooting and fault elimination	
-		

1 Preface and general information

1.1 About these Operating Instructions

- These Operating Instructions will help you to work safely with the spring-applied brake with electromagnetic release. They contain safety instructions that must be followed.
- All persons working on or with the electromagnetically released spring-applied brakes must have the Operating Instructions available and observe the information and notes relevant for them.
- The Operating Instructions must always be in a complete and perfectly readable condition.

1.2 Terminology used

Term	In the following text used for	
Spring-applied brake	Electromagnetically Released Spring-Applied Brake	
Drive system	Drive systems with spring-applied brakes and other drive components	

1.3 Conventions in use

This document uses the following styles to distinguish between different types of information:

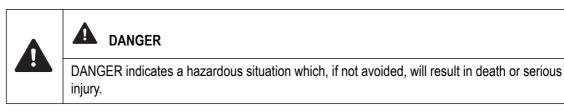
Spelling of numbers	Decimal separator	Point	The decimal point is always used. For example: 1234.56
Symbols	Page reference		Reference to another page with additional information
			For example: 🛄 16 = refer to page 16
	Wildcard		Wildcard for options, selections For example: BFK458- $\Box \Box$ = BFK458-10
	Note	\rightarrow	Important notice about ensuring smooth operations or other key information.

1.4 Abbreviations used

Letter symbol	Unit	Designation
F _R	N	Rated frictional force
	A	Current
I _H	A	Holding current, at 20 °C and holding voltage
I _L	A	Release current, at 20 °C and release voltage
I _N	A	Rated current, at 20 °C and rated voltage
M _A	Nm	Tightening torque of fixing screws
M _{dyn}	Nm	Braking torque at a constant speed of rotation
M _K	Nm	Rated torque of the brake, rated value at a relative speed of rotation of 100 rpm
n _{max}	rpm	Maximum occurring speed of rotation during the slipping time $\ensuremath{t_3}$
P _H	W	Coil power during holding, after voltage change-over and 20 °C
PL	W	Coil power during release, before voltage change-over and 20 °C
P _N	W	Rated coil power, at rated voltage and 20 °C
Q	J	Quantity of heat/energy
Q _E	J	Maximally permissible friction energy for one-time switching, thermal parameter of the brake
Q _R	J	Braking energy, friction energy
Q _{Smax}	J	Maximally permissible friction energy for cyclic switching, depending on the switching frequency
R _N	Ohms	Rated coil resistance at 20 °C
S _h	1/h	Switching frequency: the number of switching operations evenly spread over the time unit
S _{hue}	1/h	Transition switching frequency, thermal parameter of the brake
S _{hmax}	1/h	Maximum permissible switching frequency, depending on the friction energy per switching operation
SL	mm	Air gap: the lift of the armature plate while the brake is switched
S _{LN}	mm	Rated air gap
S _{Lmin}	mm	Minimum air gap
S _{Lmax}	mm	Maximum air gap
t ₁	ms	Engagement time, sum of the delay time and braking torque - rise time $t_1 = t_{11} + t_{12}$
t ₂	ms	Disengagement time, time from switching the stator until reaching 0.1 M_{dyn}
t ₃	ms	Slipping time, operation time of the brake (according to t_{11}) until standstill

Letter symbol	Unit	Designation
t ₁₁	ms	Delay during engagement (time from switching off the supply voltage to the beginning of the torque rise)
t ₁₂	ms	Rise time of the braking torque, time from the start of torque rise until reaching the braking torque
t _{ue}	s	Over-excitation time
U	V	Voltage
U _H	V DC	Holding voltage, after voltage change-over
UL	V DC	Release voltage, before voltage change-over
U _N	V DC	Rated coil voltage; in the case of brakes requiring a voltage change-over, $\rm U_N$ equals $\rm U_L$

1.5 Safety instructions and notices


The following icons and signal words are used in this document to indicate dangers and important safety information:

Safety instructions

Structure of safety instructions:

	SIGNAL WORD
	lcon
	Indicates the type of danger
	Signal word
4	Characterizes the type and severity of danger
	Note
	Describes the danger
	Possible consequences
	List of possible consequences if the safety instructions are disregarded
	Protective measure
	List of protective measures to avoid the danger

Danger level

WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

Notice about a harmful situation with possible consequences: the product itself or surrounding objects could be damaged.

1.6 Scope of delivery

After receipt of the delivery, check immediately whether the items delivered match the accompanying papers. INTORQ does not accept any liability for deficiencies claimed subsequently.

- Claim visible transport damage immediately to the deliverer.
- Claim visible deficiencies or incomplete deliveries immediately to INTORQ GmbH & Co. KG.

1.7 Disposal

The spring-applied brake consists of different types of material.

- Recycle the metal and plastic parts.
- Ensure professional disposal of assembled circuit boards according to the applicable environmental regulations.

1.8 Drive systems

Labelling

Drive systems and components are unambiguously designated by the indications on the nameplate.

Manufacturer: INTORQ GmbH & Co. KG, Wülmser Weg 5, D-31855 Aerzen, Germany

- The spring-applied INTORQ brake is also delivered in single modules which can then be put together by the customer according to their requirements. The specifications – particularly the packaging label, nameplate and type code – apply to a complete stator.
- The labelling is not included when modules are delivered individually.

1.9 Legal regulations

Liability

- The information, data and notes in these Operating Instructions met the state of the art at the time of printing. Claims referring to drive systems which have already been supplied cannot be derived from this information, illustrations and descriptions.
- We do not accept any liability for damage and operating interference caused by:
 - inappropriate use
 - unauthorised modifications to the product
 - improper work on or with the drive system
 - operating errors
 - disregarding the documentation

Warranty

- Terms of warranty: Refer to the terms of sale and delivery for INTORQ GmbH & Co. KG.
- Warranty claims must be made to INTORQ immediately after the defects or faults are detected.
- The warranty is void in all cases when liability claims cannot be made.

2 Safety instructions

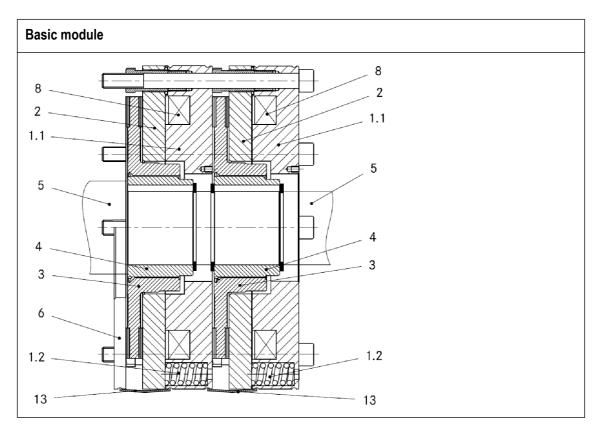
2.1 General safety instructions

- INTORQ components:
 - ... must only be used as directed.
 - ... must not be commissioned if they are noticeably damaged.
 - ... must not be technically modified.
 - ... must not be commissioned if they are incompletely mounted or connected.
 - ... must not be operated without the required covers.
 - ... can include live (current-carrying) as well as moving or rotary parts during operation according to their degree of protection. Surfaces may be hot.
- For INTORQ components:
 - ... the documentation must always be kept at the installation site.
 - ... only permitted accessories are allowed to be used.
 - ... only original spare parts of the manufacturer are allowed to be used.
- Follow all specifications and information found in the corresponding enclosed documentation. These must be followed to maintain safe, trouble-free operations and to achieve the specified product characteristics.
- Only qualified, skilled personnel are permitted to work on and with INTORQ components. According to IEC 60364 or CENELEC HD 384, qualified, skilled personnel are persons:
 - ... who are familiar with the installation, mounting, commissioning, and operation of the product.
 - ... who have the qualifications necessary for their occupation.
 - ... who know and apply all regulations for the prevention of accidents, directives, and laws relevant on site.
- Risk of burns!
 - Surfaces may be hot during operation! Provide for protection against accidental contact.
- Risk of injury due to a rotating shaft!
 - Wait until the motor is at standstill before you start working on the motor.
- The friction lining and the friction surfaces must never contact oil or grease since even small amounts reduce the braking torque considerably.
- The brake is designed for operation under the environmental conditions that apply to IP54 protection. Because of the numerous possibilities of using the brake, it is still necessary to check the functionality of all mechanical components under the corresponding operating conditions.

2.2 Application as directed

- INTORQ components:
 - ... are intended for use in machinery and systems.
 - ... must only be used for the purposes ordered and confirmed.
 - ... must only be operated under the ambient conditions prescribed in these Operating Instructions.
 - ... must not be operated beyond their corresponding power limits.

Any other use or excessive usage is considered improper!


Usage conditions for the INTORQ spring-applied brake

- Humidity: no restrictions
 - In the event of condensation or moisture formation: provide for appropriate ventilation to ensure that all components will dry quickly.
- Ambient temperature: -5 °C to +40 °C
- At high humidity and low temperature:
 - Take measures to protect the armature plate and rotor from freezing.
- Protect the electrical connections against any contact or touching.

3 Technical specifications

3.1 Product description

Versions

Fig. 1 Design of a BFK455 spring-applied brake

1.1 Stator	3	Complete rotor	6	Flange
1.2 Pressure springs	4	Hub	8	Coil

- 2 Armature plate 5 Shaft
- 13 Cover ring

3.1.1 General information

The spring-applied brake is designed for converting mechanical work and kinetic energy into heat energy. Due to the static braking torque, loads can be held at standstill. Emergency braking is possible at high speed of rotation. The wear increases as the switching energy increases (operating speeds) 17).

The BFK455 spring-applied brake is a double-disk brake with four friction surfaces. The braking torque is applied through two separate braking circuits, both electrical and mechanical, via several compression springs (1.2) in the form of generated friction. The brake circuits are released electromagnetically. Due to its division into two brake circuits, the brake is particularly suitable for applications such as lift systems and stage/platform technology. The brake can be selected based on the rated torque for one brake circuit. The second brake circuit meets the requirement for redundancy.

The division of the brake circuits is done using two separate armature disks (2) with their corresponding compression springs (1.2) and electromagnetic coils (8). Each brake circuit can be operated individually due to the separate supply lines for each stator and armature plate (\square 36).

Each brake circuit has a micro-switch which monitors the switching state of the spring-applied brake. Using the associated switching device, the supply voltage (AC voltage) is rectified and, when the brake is released, lowered after a short period of time. This results in a reduction of the average electrical power of the brake.

The stator (1.1) is supplied in heat class F. The limit temperature of the coils (8) is 155 °C. The BFK455 spring-applied brake is designed for a maximum operating time of 60 % with holding current reduction.

Certificate

Туре	Characteristic torque	EC-type examination certificate				
	[Nm]	Directive 95/16/EC	UCM	Directive 2014/33 EU		
	2 x 1200					
BFK455-28	2 x 1700, 2 x 1800	ABV 881/2	ESV 881/2	EU-BD 881		
	2 x 2065					

3.1.2 Brake

During the braking procedure, the pressure springs (1.2) use the armature plate (2) to press the rotor (3) (which can be shifted axially on the hub (4)) against the friction surface. The asbestos-free friction linings ensure high braking torque and low wear. The braking torque is transmitted between the hub (4) and the rotor (3) via gear teeth.

3.1.3 Brake release

When the brakes are applied, an air gap " s_L " is present between the stator (1.1) and the armature plate (2). To release the brake, the coil of the stator (1.1) is energised with the DC voltage provided. The resulting magnetic flux works against the spring force to draw the armature plate (2) to the stator (1.1). This releases the rotor (3) from the spring force and allows it to rotate freely

3.1.4 Release monitoring

The spring-activated brake has a micro-switch for each braking circuit to monitor the switching state. When the brake is released, the micro-switches toggle. This means that it is possible to prevent the drive from being operated when the brake is closed. The micro-switches can be connected as both normally open and also normally closed.

To check that the micro-switches function correctly, we recommend testing the switching status (refer to table 6) in both the released and applied braking states.

3.1.5 Encapsulated design (optional)

This design not only avoids the penetration of spray water and dust, but also the spreading of abrasion particles outside the brake. This is achieved by:

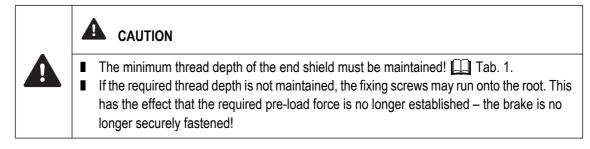
a cover seal over the armature plate and rotor.


3.1.6 Project planning notes

- The brakes are dimensioned in such a way that the given rated torques are reached safely after a short run-in process.
- However, since the organic friction linings used do not all have identical properties and because environmental conditions can vary, deviations from the specified braking torques are possible. These must be taken into account in the form of appropriate dimensioning tolerances. Increased breakaway torque is common in particular after long downtimes in humid environments where temperatures vary.
- If the brake is used as a pure holding brake without dynamic load, the friction lining must be reactivated regularly.

INTORQ

3.2 Rated data

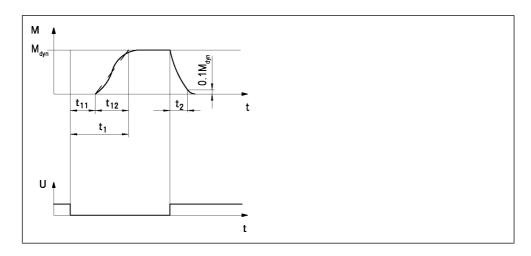

3.2.1 Dimensions

Туре	Rated torque	Air gap		Permitted wear			Weight complete stator
	[NM]	s _{LN} ^{+0.05} [mm]	s _{Lmax.} [mm]	[mm]	min. [mm]	max. [mm]	m [kg]
	2 x 1100		0.7	0.2	17.7	18	
	2 x 1200						
BFK455-28	2 x 1700	0.4	0.7	0.3			46
	2 x 1800						
	2 x 2065		0.6	0.2	17.8		

Туре	Pitch	circle	-	xing screws Minim DIN 912		/inimum thread depth		Tightening torque	
			without flange	with flange	without flange	with flange	without flange	with flange	
	Ø [mm]	Thread	[mm]	[mm]	[mm]	[mm]	M _A [Nm]	M _A [Nm]	
BFK455-28	314	M16	6 x M16x210	6 x M16x220	25	22.5	206	265	

Tab. 1: Dimensions of the BFK455-28

Technical specifications


INTORQ

3.2.2 Electrical data

Туре	Voltage		Pov	ver	Coil resistance	Current
	Release ±10%	Holding ±10%	Brake release	Holding		
	U _L [V DC]	U _H [V DC]	P _N [W]	Р _н [W]	R _N ± 5% [Ω]	I _L [A]
	103	52			2 x 24.5	2 x 4.21
BFK455-28	205	103	2 x 434	2 x 108.5	2 x 97	2 x 2.12
	360	180			2 x 298.6	2 x 1.21

Tab. 2: Coil power ratings of the BFK455-28

3.3 Rated data (design data)

Fig. 2 Operating/switching times of the spring-applied brakes

t₁ Engagement time

t₂

- t₁₁ Reaction delay of engagement
- Disengagement time (up to $M = 0.1 M_{dyn}$)
- $\rm M_{\rm dyn}$ Braking torque at a constant speed of rotation
- $t_{12} \quad \text{Rise time of the braking torque} \\$
- U Voltage

Туре	Rated torque ¹⁾	Max. permitted switching energy	Transitional switching frequency	ching $at s_{LN}$ and 0.7 I _N				Max. speed ³⁾
	Mĸ	Q_{E}	S _{hue}	Engagi	ing DC	side ⁴⁾	Disengaging	
	[Nm]	[J]	[1/h]	t ₁₁	t ₁₂	t ₁	t ₂	n _{max.} [rpm]
	2 x 1100			80		300	- 370	455
	2 x 1200			60		280		255
BFK455-28	2 x 1700	360000	7	20	220	240	480	455
	2 x 1800	x 1800		20		240	400	400
	2 x 2065			30		250	460	255

 Tab. 3:
 Switching energy - switching frequency - switching times

¹⁾ Minimum brake torque with run-in friction components at $\Delta n=100$ rpm

- ²⁾ Typical values
- ³⁾ Max. speed according to EC-type examination certificate (for higher speeds, consultation with the manufacturer is required)
- 4) Measured with induced voltage limitation of -800 V DC

Engagement time

The transition from a brake-torque-free state to a holding-braking torque is not free of time lags.

For emergency braking, short engagement times for the brake are absolutely essential. The DC switching in connection with a suitable spark suppressor must therefore be provided.

- The engagement times apply for DC switching with a spark suppressor.
 - Spark suppressors are available for the rated voltages.
 - Connect the spark suppressors in parallel to the contact. If this switching is not admissible for safety reasons (e.g. with hoists and lifts), the spark suppressor can also be connected in parallel to the brake coil.
 - Circuit proposals: 🛄 36
- If the drive system is operated with a frequency inverter so that the brake will not be de-energised before the motor is at standstill, AC switching is also possible (not applicable to emergency braking).

NOTICE

If the brake is using AC-side switching, the engagement times increase approximately by a factor of 5 (refer to) 35 for connection).

Disengagement time

The disengagement time is the same for DC and AC switching. The specified disengagement times always refer to control using over-excitation.

3.4 Switching energy / switching frequency

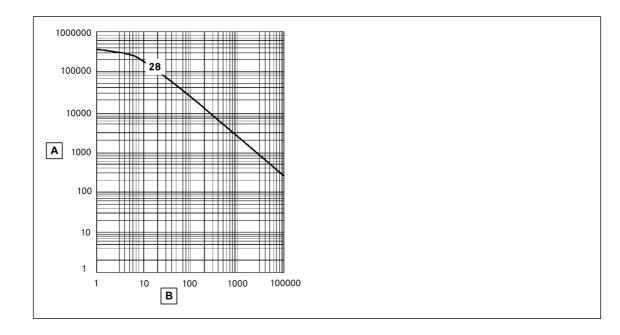
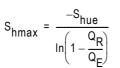



Fig. 3 Switching energy as a function of the switching frequency

A Switching energy Q [J]

B Switching frequency S_h [1/h]

$$Q_{smax} = Q_E \left(\frac{\frac{-S_{hue}}{S_h}}{1 - e} \right)$$

The permissible switching frequency S_{hmax} depends on the amount of heat Q_R (refer to Figure 3). At a preset switching frequency S_h , the permissible amount of heat is Q_{Smax} .

With high speeds of rotation and switching energy, the wear increases strongly, because very high temperatures occur at the friction surfaces for a short time.

3.5 Emissions

Electromagnetic compatibility

NOTICE

The user must ensure compliance with EMC Directive 2014/30/EU using appropriate controls and switching devices.

If an INTORQ rectifier is used for the DC switching of the spring-applied brake: If the switching frequency exceeds five switching operations per minute, the use of a mains filter is required.

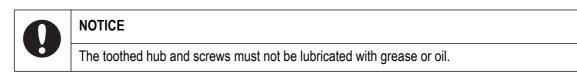
If the spring-applied brake uses a rectifier from another manufacturer for the switching, it may become necessary to connect a spark suppressor in parallel with the AC voltage. Spark suppressors are available on request, depending on the coil voltage.

Heat

Since the brake converts kinetic energy as well as mechanical and electrical energy into heat, the surface temperature varies considerably, depending on the operating conditions and possible heat dissipation. Under unfavourable conditions, the surface temperature can reach 130 °C.

Noise

The switching noise during engagement and disengagement varies depending on the air gap, braking torque and brake size.


Depending on the natural oscillation after installation, operating conditions and state of the friction surfaces, the brake may squeak during braking.

Miscellaneous

The abrasion of the friction parts produces dust.

4 Mechanical installation

4.1 Important notes

4.2 Necessary tools

Туре		Torque wrench Bit for hexagon socket screws				
			2			
	Measuring range [Nm]	Wrench width [mm]	Adjustment tubes - wrench size [mm]			
BFK455-28	40 - 400	14	24			

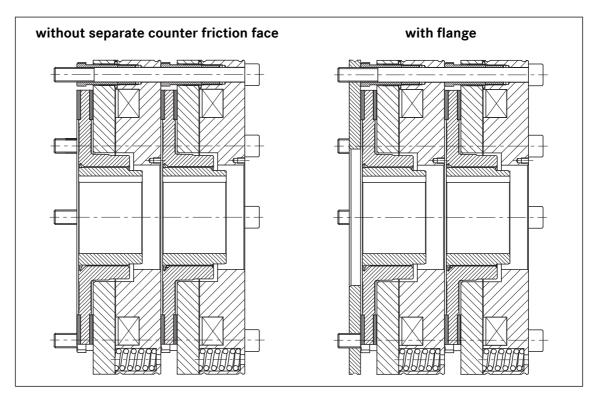
Multi-meter	Caliper gauge	Feeler gauge

4.3 Assembly

4.3.1 Important notes

Brake size	Minimum requirements: Use as counter friction surface						
	Material ¹⁾	Evenness [mm]	Axial run-out [mm]	Roughness	Miscellaneous		
28	S235 JR C15 EN-GJL-250	< 0.1	0.1	Rz10	 Threaded holes with minimum thread depth 11 Free of grease and oil 		

Tab. 4: Counter friction face design of the end shield


¹⁾ For other materials, please consult with INTORQ.

The diameter of the shaft shoulder must not be greater than the tooth root diameter of the hub.

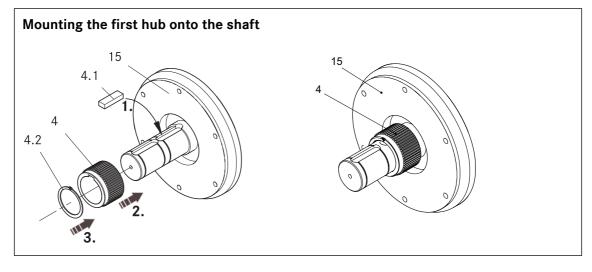
4.3.2 Preparation

- 1. Unpack the spring-applied brake.
- 2. Check for completeness.
- 3. Check the nameplate data (especially the rated voltage).

4.3.3 Overview

INTORQ

4.4 Installation


The toothed hub and screws must not be lubricated with grease or oil.

NOTICE

When you have ordered a version with flange, attach the hub first (23), then continue with the "Assembly of the counter friction faces".

4.4.1 Brake assembly

Fig. 4

4 Hub 4.1 Key

15 End shield

- 1. Insert the key (4.1) into the shaft.
- 2. Press the first hub (4) onto the shaft.
- 3. Secure the hub (4) against axial displacement (for example, by using a circlip (4.2)).

NOTICE

For reverse operations, we recommend also glueing the hub to the shaft.

Assembly of the counter friction faces

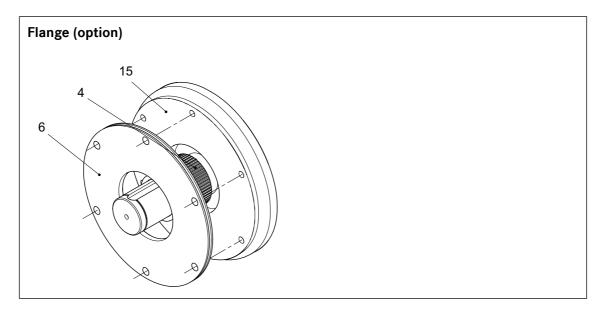
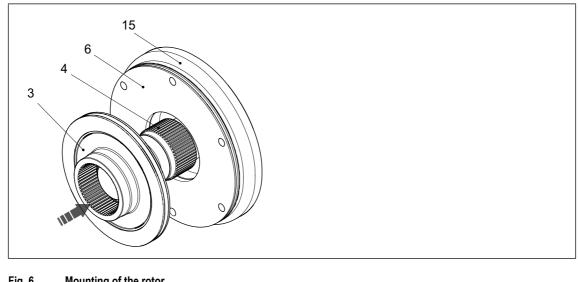



Fig. 5 Assembly of the flange

- 4 Hub 15 End shield
- 6 Flange
- 4. Hold the flange (6) to the end shield (15).
- 5. Align the through holes in the flange to the threads of the fastening bore holes.

In the following sections, only assembly for the version with flange will be described.

Assembly of the first rotor

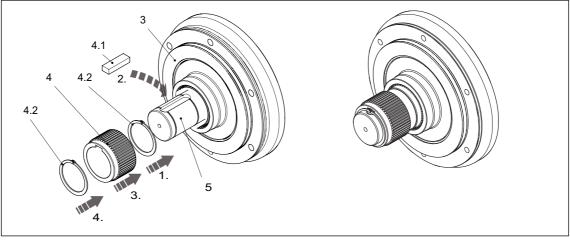
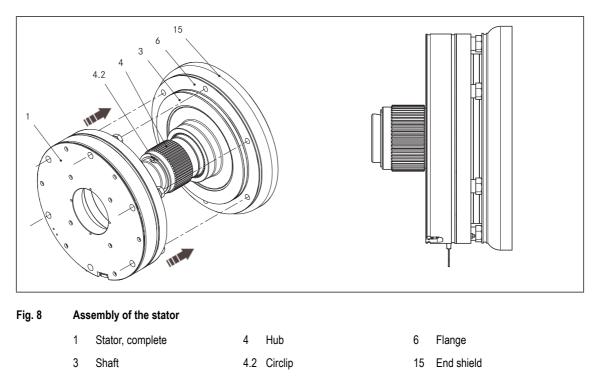


Fig. 6 Mounting of the rotor

- 3 Rotor 6 Flange 15 End shield 4 Hub
- 6. Push the rotor (3) onto the hub (4) and check whether it can be moved by hand.

NOTICE Only in the case of rotors with mounting paste on their gear teeth: Remove cover films from both front ends of the rotor. Protect friction surfaces against contact with mounting paste! After the mounting, excessive mounting paste must be removed properly!

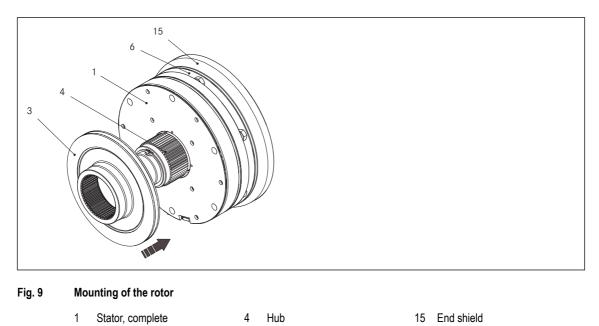
Installation of the second hub onto the shaft


Fig. 7 Mounting of the second hub

4	Hub	3	Complete rotor	4.2	Circlip
5	Shaft	4.1	Кеу		

7. Insert second key (4.1) into the shaft (5) if required.

- 8. Press second hub (4) onto the shaft (5).
- 9. Secure hub (4) against axial displacement, e.g. by using a circlip (4.2).


Assembly of the first stator

10. Push the complete stator onto the shaft.

11. Align the through holes in the complete stator (1) to the threads of the fastening bore holes.

Assembly of the second rotor

12. Push the complete rotor (3) onto the hub (4) and check whether it can be moved by hand.

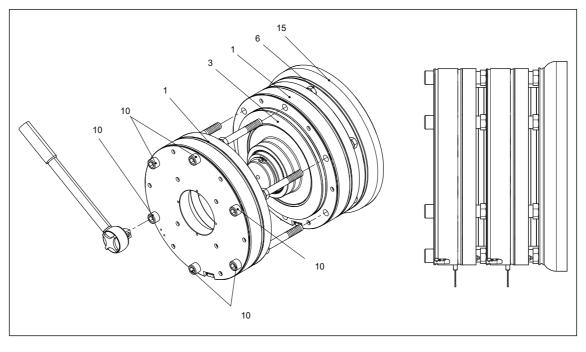
Flange

6

3

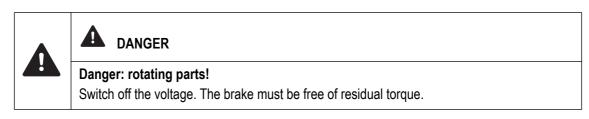
Complete rotor

INTORQ



NOTICE

If a manual release is to be installed, the procedure described in section 4.5.2 (Step 2) must be carried out **now**!


Assembly of the second stator

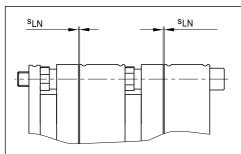
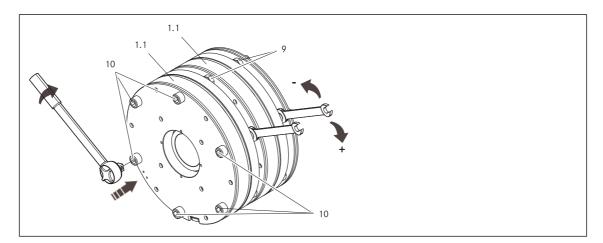


Fig. 10 Assembly of the stator

- 1 Stator, complete 6 Flange 15 End shield
- 3 Complete rotor 10 Fixing screws
- 13. Push the complete stator onto the shaft.
- 14. Align the through holes in the complete stator (1) to the threads of the fastening bore holes in the first stator.
- 15. Evenly tighten the brake with the six socket head cap screws (10) included in the scope of supply in several runs using a torque key.
- 16. Establish the electrical connection and energize the brake (III 35).
- 17. Use a torque key to re-tighten the supplied fixing screws (10) with the required tightening torque (1) 16).
- 18. Switch off the power.

4.4.2 Check the air gap

Fig. 11 Check the air gap


Check the air gap near the screws (10) by means of a feeler gauge. Compare the measured values to the values for "s_{LN}" in the table (11) 16).

NOTICE

Do not insert feeler gauge more than 10 mm between armature plate (2) and stator (1.1)!

If the measured value "s_L" is outside the tolerance of "s_L", set the dimension:

Fig. 12 Adjusting the air gap during the initial installation

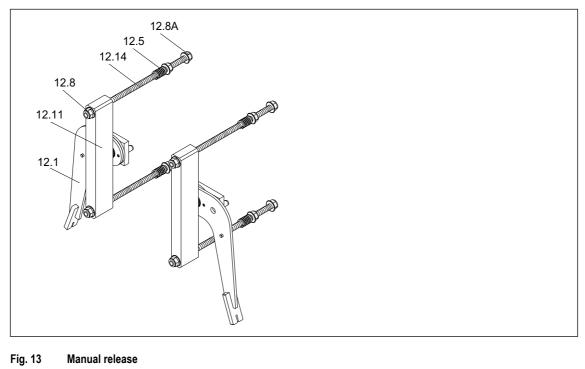
2. Loosen the bolts (10).

NOTICE

First correctly adjust the air gap with every 2nd bolt (10) / sleeve bolt (9)! The other three sleeve bolts should be screwed into the stator so that they do not touch the flange or the bearing shield. Then repeat the process with the other three bolts (10).

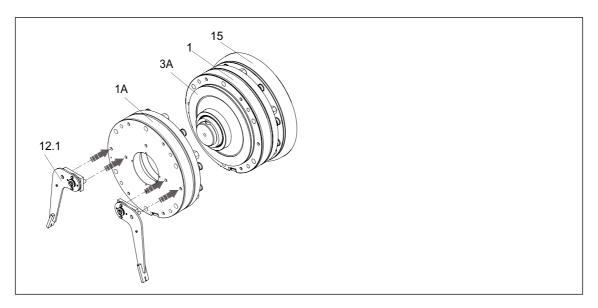
- 3. Slightly turn the sleeve bolts (9) using an open end spanner.
 - If the air gap is too large, screw into the stator (1.1).
 - If the air gap is too small, screw them out of the stator (1.1).
 - A 1/6 turn will change the air gap by approximately 0.15 mm.
- 4. Tighten the screws (10) (for torques, see table [] 16).
- 5. Check the air gap "s_L" near the screws (10) using a feeler gauge, ("s_{LN}" \square 16).
- 6. Repeat the adjustment procedure if the deviation of " s_{LN} " is too large.

4.5 Manual release


NOTICE

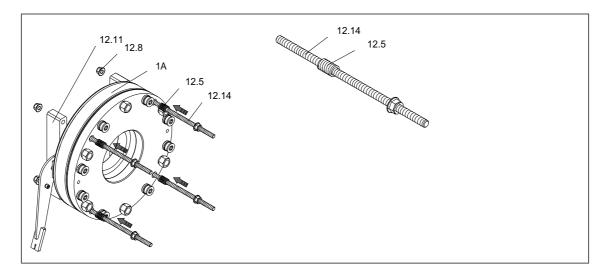

- The manual release is designed for activation via a Bowden cable.
- For activation without a Bowden cable, the lever has to be extended.
- An individual brake circuit can only be released electrically.

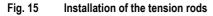
The manual release is mounted when the double-spring-applied brake is installed. No power is applied to the brake.


1. Mount the first rotor (3), the first complete stator (1), and the second rotor (3A) according to section 4.4.1, steps 1 through 12 (

4.5.1 Components of the manual release

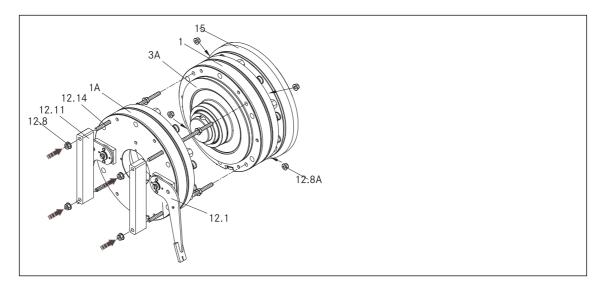
4.5.2 Installing the manual release


Fig. 14 Applying the manual release lever


2. Put both levers completely (12.1) onto the second stator (1A). To do this, push in the plates' pins into the corresponding holes of the stator (using a suitable tool).

NOTICE

The plates are not symmetric. The pin with the greater distance from the axis of rotation must be oriented towards the outside. The lever must also face outwards.



3. Assemble four pre-assembled tension rods (12.14) with one spring (12.5) each

Carry out steps 4 and 5 separately for each side of every lever.

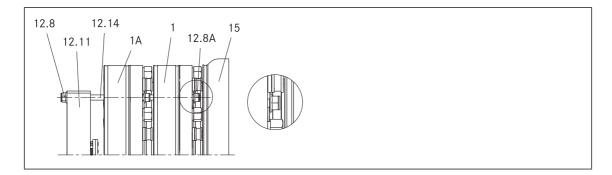

4. From the armature plate end, plug one pair of pre-assembled tension rods (12.14) each into the provided bore holes (Ø11 mm) of the complete stator (1A). Insert the springs (12.5) of the tension rod into the clearing hole of the armature plate (Ø16.5 mm) in the process.

Fig. 16 Assembly parts

- 5. Attach the clips (12.11) with the bore holes (Ø12 mm) to the tension rods (12.14) and tighten them with the lock nuts (12.8). The blind holes (Ø17 mm) are now pointing in the direction of the stator and the screw heads of the manual release levers are completely sunk into the clips (12.11).
- 6. Position the second complete stator (1A) in front of the complete stator (1). Insert the pre-assembled tension rods (12.14) into the through holes (Ø12 mm) of the first complete stator (1) in the process.

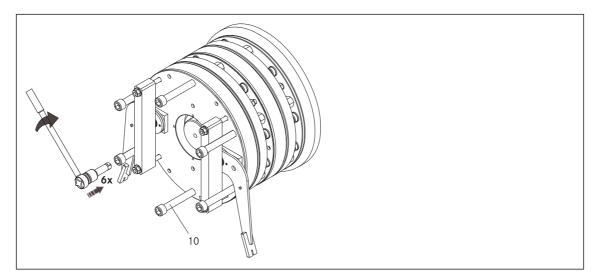


Fig. 17 Pre-assembly of the brake with manual release on the motor

- 7. Screw four lock nuts (12.8A) between the motor end shield and the complete stator (Pos.1) onto the tension rods (12.14) up to the point where the back side of the lock nut aligns with the top of the tension rod.
- 8. Evenly tighten the brake with the six socket head cap screws (10) included in the scope of supply in several runs using a torque key (as shown in Figure 17).

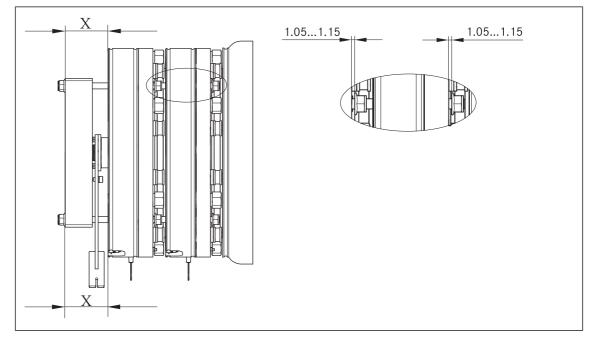
- 9. Establish the electrical connection and energize the brake (35).
- 10. Use a torque key to re-tighten the supplied fixing screws (10) with the required tightening torque (1) 16).
- 11. Switch off the power.

4.5.3 Checking the air gap

Fig. 18 Checking the air gap

 Check the air gap using a feeler gauge and correct it if necessary (s_{LN} = 0.4 +0.05 mm) according to Figures 11 and 12.

4.5.4 Setting the manual release


NOTICE

For setting the manual release, always lock the pre-assembled hexagon nut of the tension rod (12.14) against rotation and rotate the lock nuts at the ends of the tension rod only.

Carry out steps 13 and 14 separately for each side of every lever

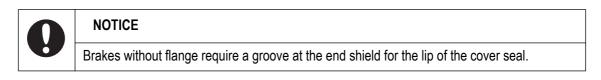
- 13. Tighten the lock nuts (pos. 12.8) on the clips (12.11) evenly until the nuts of the tension rod are in contact with the armature plate of the second stator (1A) (there should be noticeable resistance). While tightening, make sure that the clips (12.11) are parallel to the rear of the stator (1A). (Check using a caliper gauge.) If there are dimensional differences where X > 0.1 mm (see Figure 19), this should be corrected by loosening the lock nut (12.8) at the smaller dimension and tightening the lock nut (12.8) at the larger dimension until the clips (12.11) are adjusted in parallel to the back of the brakes (as shown in Figure 19).
- 14. Evenly tighten the lock nuts on the motor end shield side up to the point where the nuts of the tension rod are in contact with the armature plate of the first stator (1) (tangible resistance).
- 15. Loosen the lock nuts (12.8) at the clips (12.11) by a ³/₄ revolution (270°).

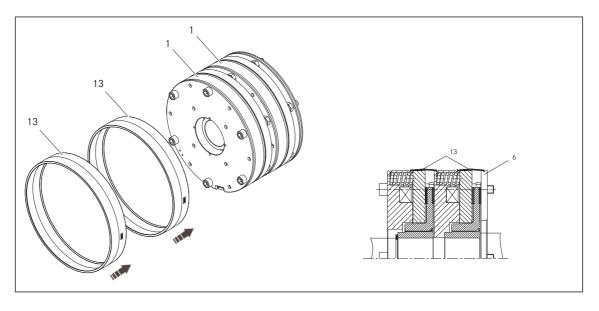
Carry out steps 16 and 17 separately for each side of every lever.

Fig. 19 Test dimensions and reference dimensions

16. Check of the correct setting (nominal dimension 1.05 ... 1.15 mm):

- For this purpose, position two feeler gauges of the same thickness (e.g. 1.1 mm) for each tension rod between the hexagon nuts and the complete stator and ensure that the feeler gauges can be easily moved.
- 17. Correct the setting if necessary until both feeler gauges can be moved by the same force.
- 18. Check that the manual release functions properly. Attach pipe sections onto the levers and press them together to check whether the motor shaft can rotate freely.
- 19. Connect the Bowden cable (not included in this delivery) and pull until the motor shaft can be freely rotated.




NOTICE

The actuation force between the Bowden cable's hanging points is approximately 900 N. The actual pull force required may be higher depending on the characteristics and position of the cable.

INTOR

4.6 Cover ring assembly

Fig. 20 Cover ring assembly

- 1. Disconnect electrical connection.
- 2. Pull cables through the cover rings (13).
- 3. Push cover rings (13) over the complete stators (1).
- 4. Press the lips of the first cover ring (13) into the groove of the complete stator (1) and flange (6) / end shield.
- 5. Press the lips of the second cover ring into the groove of the first and second complete stator (1).
- 6. Re-establish the electrical connection.

NOTICE

Cover ring with condensation drain hole:

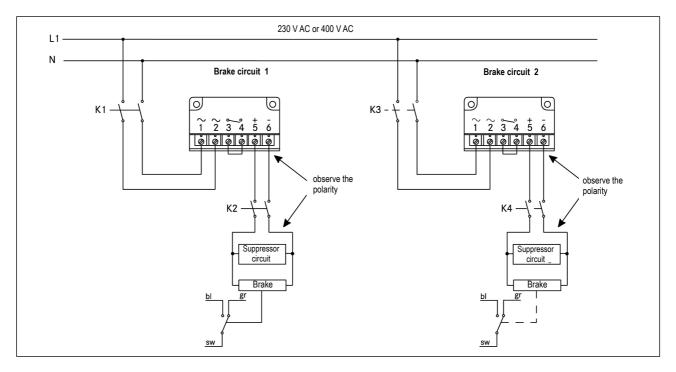
Attach the cover ring so that condensation can drain through the hole.

5 Electrical installation

5.1 Important notes

	A DANGER
4	 There is a risk of injury by electrical shock! The electrical connections must only be made by skilled personnel! Only carry out connection work when no voltage is applied (no live parts)! There is a risk of unintended start-ups or electric shock.

NOTICE


Make sure that the supply voltage corresponds to the data on the nameplate.Voltages must be adjusted to the local environment!

	NOTICE
0	 If an emergency stop is carried out without the required suppressor circuit, the control unit may be destroyed. Observe the correct polarity of the suppressor circuit!

	NOTICE
0	 To functionally test the individual brake circuits, the power supply must be able to be switched off individually. For a new over-energizing during switch-on, it is also necessary to open switches K1/K3. The protective circuitry contained in the INTORQ switching device BEG-561 (terminals 3 and 4) is not permitted for use in the lift system. The protective circuitry must be connected parallel to the brake coil (1 36).

	N	OTICE
V		Only operate the brake with a holding current reduced to 25 % of P _{max} ! You can use the INTORQ switching device BEG-561-□□□-□□□ for this purpose.

5.1.1 Switching suggestions

Fig. 21 INTORQ BFK455 connection diagram

Switching on

K2/K4 must be switched on before or at the same time as K1/K3!

Switching off

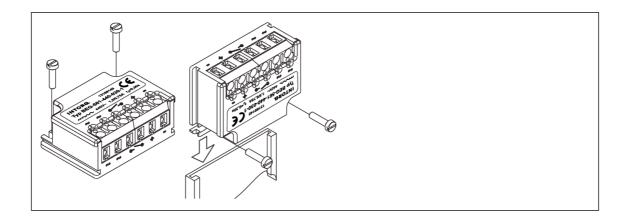
- Normal AC switching
 - K2/K4 remain closed
 - K1/K3 open
- Emergency stop DC switching
 - K1/K3 and K2/K4 are opened at the same time

NOTICE

- Recommended current load for the micro-switches
- DC current: 10 mA ... 100 mA at 12 V
- AC current: 10 mA ... 5 A at 12 V / max. 250 V
- Suppressor circuit: the limit voltage impacts the switching times (11).

5.2 Bridge/half-wave rectifier (optional)

BEG-561-

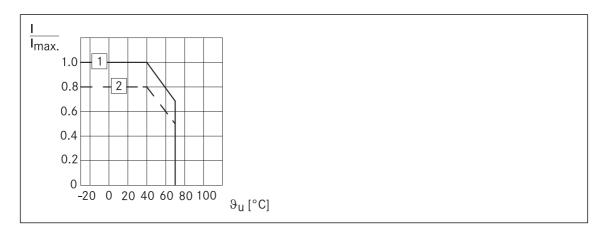

The bridge/half-wave rectifiers are used to supply electromagnetic DC spring-applied brakes which are approved for the use with such rectifiers. Other use is only permitted with the approval of INTORQ.

Once a set over-excitation time has elapsed, the bridge/half-wave rectifiers switch over from bridge rectification to half-wave rectification.

Electrical installation

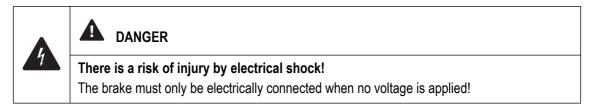
5.2.1	Assignment: Bridge/half-wave rectifier - brake size
-------	---

Rectifier type	Supply voltage	Coil voltage Release / holding	Assigned brake	
	[V AC]	[V DC]		
BEG-561-255-130	230 ±10%	205 / 103	BFK455-28 (205 V)	
BEG-561-440-130	400 ±10%	360 / 180	BFK455-28 (360 V)	


5.2.2 Technical specifications

Rectifier type	Bridge / half-wave rectifier
Output voltage for bridge rectification	0.9 x U ₁
Output voltage for half-wave rectification	0.45 x U ₁
Ambient temperature (storage/operation) [°C]	-25 - +70

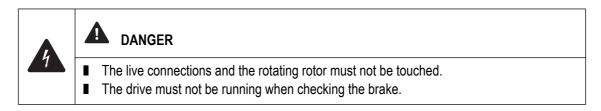
Туре	Input voltage U ₁ (40 Hz 60 Hz)		Max. current I _{max}		Over-excitation time t _{ue} (± 20%)			
	Min. [V ~]	Rated [V ~]	max. [V ~]	Bridge [A]	half-wave [A]	at U _{1 min} [s]	at U _{1 Nom} [s]	at U _{1 max} [s]
BEG-561-255-130	160	230	255	3.0	1.5	1.870	1.300	1.170
BEG-561-440-130	230	400	440	3.0	1.5	2.300	1.300	1.200


Tab. 5: Data for bridge/half-wave rectifier type BEG-561

5.2.3 Permissible current load at ambient temperature

- 1 For screw assembly with metal surface (good heat dissipation)
- 2 For other assembly (e.g. adhesive)

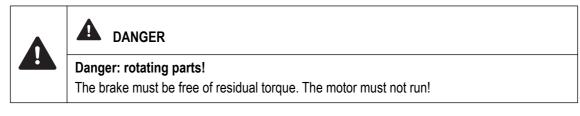
5.3 Electrical connection



NOTICE

Compare the coil voltage of the stator to the DC voltage of the installed rectifier.

6 Commissioning and operation


6.1 Important notes

6.2 Function checks before commissioning

6.2.1 Functional checks

Brake with micro-switch

DANGER
There is a risk of injury by electrical shock! Live connections must not be touched.

- 1. The switching contact for the brake must be open.
- 2. Remove two bridges from the motor terminals to de-energise the motor.
 - Do not switch off the voltage supply to the brake.

NOTICE

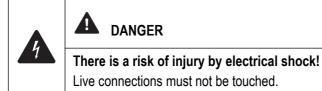
If the brake is connected to the neutral point of the motor, the PE conductor must also be connected to this point.

- 3. Apply DC voltage to the brake.
- 4. Measure the AC voltage at the motor terminals. The measured level must be zero.
- 5. Close the switching contact for the brake.
 - The brake is released.

- 6. Measure the DC voltage at the brake:
 - The measured DC voltage after the over-excitation time (see bridge/half-wave rectifier, [] 36) must correspond to the holding voltage (see table 5). A deviation of ±10 % is permissible.
- 7. Check the air gap " s_L ".
 - It must be zero and the rotor must rotate freely.
- 8. Check the switching status of the micro-switch (see table 6).
- 9. Open the switching contact for the brake.
 - The brake is applied.
- 10. Check the switching status of the micro-switch (see table 6).
- 11. Switch off DC voltage for the brake.
- 12. Screw the bridges onto the motor terminals.
- 13. If necessary, remove the neutral conductor from the neutral point (step 2).

Contact type	Connection	Brake released	Micro-switch closed
NC contact	black / grey	yes	no
		no	yes
NO contact	black / blue	yes	yes
		no	no

Tab. 6: Switching status of the micro-switch


The preparations for commissioning are completed.

6.3 Commissioning

- 1. Switch on the drive system.
- 2. Carry out a braking test.

6.4 During operation

	DANGER
	Danger: rotating parts! The running rotor must not be touched.

- Checks must be carried out regularly. Pay special attention to:
 - unusual noises or temperatures
 - loose attachment elements
 - the condition of the electrical cables
- The armature plate must be tightened and the rotor must move without residual torque.
- Measure the DC voltage at the brake.
 - The measured DC voltage after the over-excitation time (see bridge/half-wave rectifier,) 36) must correspond to the holding voltage (see table 5). A deviation of ±10 % is permissible.
- If faults occur once, go through the troubleshooting table in chapter 8. If the fault cannot be fixed or eliminated, please contact your customer service.

7 Maintenance and repair

7.1 Wear of spring-applied brakes

INTORQ spring-applied brakes are wear-resistant and designed for long maintenance intervals. The friction lining and braking mechanism are subject to operational wear. For safe and trouble-free operation, the brake must be checked at regular intervals or replaced, if necessary \square 43.

NOTICE

The air gap must not be re-adjusted after it has been correctly adjusted during the initial installation of the brake on the motor! This could result in a loss of braking torque.

The table below shows the different causes of wear and their impact on the components of the spring-applied brake. The influential factors must be quantified so that the service life of the rotor and brake can be calculated and so the prescribed maintenance intervals can be specified accurately. The most important factors in this context are the applied friction energy, the initial speed of rotation of braking and the switching frequency. If several of the causes of friction lining wear occur in an application at the same time, the influencing factors should be added together when the amount of wear is calculated.

Component	Cause	Effect	Influencing factors	
Friction lining	Braking during operation	Wear of friction lining	Friction work	
	Emergency stops			
	Overlapping wear during start and stop of drive			
	Active braking via the drive motor with support of brake (quick stop)			
	Starting wear in case of motor mounting position with vertical shaft, even when the brake is not applied		Number of start-stop cycles	
Armature plate and flange	Rubbing of brake lining	Armature plate and flange are run in	Friction work	
Gear teeth of brake rotor	Relative movements and shocks between brake rotor and brake shaft	Wear of gear teeth (primarily on the rotor side)	Number of start-stop cycles	
Brake support	Load reversals and jerks in the back- lash between the armature plate and guide pins	Breaking of armature plate and guide pins	Number of start/stop cycles, braking torque	
Springs	Axial load cycle and shear stress of springs through radial backlash on reversal of armature plate	Reduced spring force or fatigue failure	Number of switching oper- ations of brake	

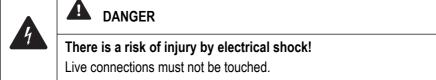
Tab. 7: Causes for wear

7.2 Inspections

To ensure safe and trouble-free operations, the spring-applied brakes must be checked at regular intervals and, if necessary, replaced. Servicing will be easier at the plant if the brakes are made accessible. This must be considered when installing the drives in the plant.

Primarily, the required maintenance intervals for industrial brakes result from their load during operation. When calculating the maintenance interval, all causes for wear must be taken into account, 242. For brakes with low loads (such as holding brakes with emergency stop function), we recommend a regular inspection at a fixed time interval. To reduce costs, the inspection can be carried out along with other regular maintenance work in the plant.

Failures, production losses or damage to the system may occur when the brakes are not serviced. Therefore, a maintenance strategy that is adapted to the particular operating conditions and brake loads must be defined for every application. For the spring-applied brakes, the maintenance intervals and maintenance operations listed in the table below must be followed. The maintenance operations must be carried out as described in the detailed descriptions.


7.2.1 Maintenance intervals

Туре	Time interval		
	for service brakes:	for holding brakes with emergency stop:	
BFK455-28	 according to service life calculation or else every six months after 4000 operating hours at the latest 	 at least every two years after 1 million cycles at the latest 	
	Maintenance		
	Inspections with assembled brake:	Inspections after the brake has been removed:	
	Check release function and 44 control	 Check the play of the rotor gear teeth (replace worn-out rotors) 	
	■ Measure the air gap 🛄 45	Check for breaking out of the torque support at the sleeve bolts and the armature plate	
	 Measure the rotor thickness (replace rotor if required) 	Check the springs for damage	
	 Check for thermal damage of the armature plates or flange (dark-blue tarnishing) 	 Check the armature plate and flange or bearing shield Levelness < 0.1 mm Max. run-in depth = rated air gap for the size 	

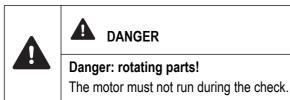
7.2.2 Release / voltage

1. Start motor and control system!

	A DANGER
	Danger: rotating parts!
	The running rotor must not be touched.

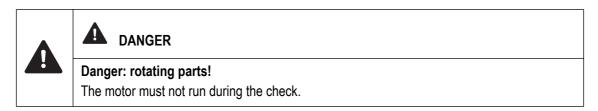
- 2. Observe the air gap " s_L " when the drive is running. It should be zero.
- 3. Measure the DC voltage at the brake.
 - After the over-excitation time (see bridge/half-wave rectifier, 236), the measured DC voltage must correspond to the holding voltage (237). A deviation of ±10 % is permissible.

7.3 Maintenance

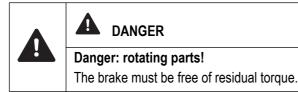


NOTICE

Brakes with defective armature plates, socket head cap screws, springs or counter friction faces must always be replaced completely. Observe the following for inspections and maintenance works:


- Contamination by oils and greases should be removed using brake cleaner, or the brake should be replaced after determining the cause. Dirt and particles in the air gap between the stator and the armature plate endanger the function and should be removed.
- After replacing the rotor, the original braking torque will not be reached until the run-in operation for the friction surfaces has been completed. After replacing the rotor, the run-in armature plates and counter friction faces have an increased initial rate of wear.

7.3.1 Check the rotor thickness

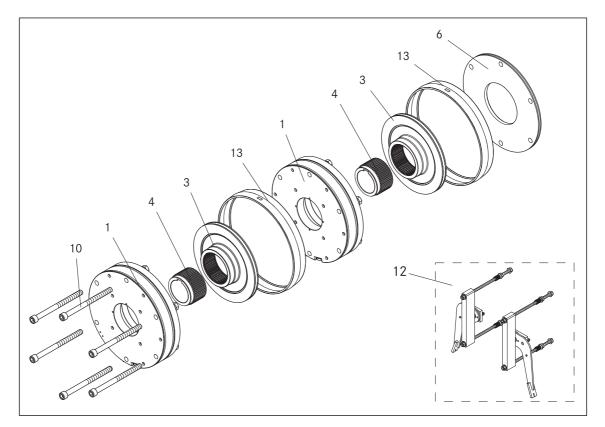

- 1. Stop the motor and control system!
- 2. Remove the motor cover and remove the cover ring, if present.
- 3. Measure the rotor thickness using a caliper gauge.
- 4. Compare the measured rotor thickness with the minimally permissible rotor thickness, 🛄 16.
- 5. If required, replace the rotor completely (45).

7.3.2 Check the air gap

- 1. Stop the motor and control system!
- Measure the air gap "s_L" near the fixing screws between the armature plate and the stator using a feeler gauge.
- 3. Compare the measured air gap with the maximum permitted air gap " s_{Lmax} " (\square 16).
- 4. If required, replace both rotors completely.

7.3.3 Replacing the rotor

- 1. Switch off voltage!
- 2. Disconnect the connection cable.
- 3. Loosen the screws evenly and remove them completely.
- 4. Remove the complete stator from the bearing shield. Pay attention to the connection cable.
- 5. Pull the complete rotor from the hub.
- 6. Check the gear teeth of the hub.
- 7. Replace the hub if it is worn.
- 8. Check the friction surface on the bearing shield. In case of strong scoring at the flange, replace the flange. In case of strong scoring on the bearing shield, rework the friction surface.
- 9. Measure the rotor thickness (new rotor) and head height of the sleeve bolts with a caliper gauge.
- 10. Calculate the distance between the stator and the armature plate as follows:


Distance = rotor thickness + s_{LN - head height}

("s_{LN}" 🛄 16)

- 11. Unscrew the sleeve bolts evenly until the calculated distance between the stator and armature plate is reached.
- 12. Install and adjust the new complete rotor and stator (III 23).
- 13. Reconnect the connection cable.

7.4 Spare-parts list

- Only parts with item numbers are available.
 - The item numbers are only valid for the standard design.
- Please include the following information with the order:
 - Order number of the brake
 - Position number of the spare part

Fig. 22 BFK455-28 spring-applied brake

ltem	Designation	Variant
1	Stator, complete	Voltage
3	Complete rotor Rotor, complete noise-reduced	
4	Hub	Bore diameter
6	Flange	
10	Fixing screws Socket head cap screw set, DIN912	for mounting to the motor for flange with through hole
12	Complete manual release	
13	Cover ring	

7.5

INTORQ

Ordering spare parts			
Stator, complete			
Size	□ 28		
Voltage	🗆 103 V / 52 V	🗆 205 V / 103 V	🗆 360 V / 180 V
Braking torque	Nm (se	ee torque gradation)	
Cable length	□ Standard (1000	mm)	
Armature plate	□ Standard		
Micro-switch	\Box Monitoring the s	switching function	
Components			
Rotor	□ Aluminium	🗆 Noise-r	reduced (rotor with sleeve
Hub	n	nm (for hole diameter	; see dimensions)
Fixing screw set	□ For mounting		
	□ For mounting w	ith flange	
Counter friction face	Flange		
Seal	Cover ring		
Complete manual release			
Electrical accessories			
Rectifier type: Selection se	e chapter 5.2.1		
Rectifier	□ BEG-561-255-1	30	
	□ BEG-561-440-1	30	

8 Troubleshooting and fault elimination

If any malfunctions should occur during operations, please check for possible causes based on the following table. If the fault cannot be fixed or eliminated by one of the listed measures, please contact customer service.

Fault	Cause	Remedy
Brake cannot be released, air gap is	Coil interruption	 Measure the coil resistance using a multimeter: If resistance is too high, replace the complete stator.
not zero	Coil has contact to earth or between wind- ings	 Measure coil resistance with multimeter: Compare measured value with rated resistance. Values: 117 If resistance is too low, replace the complete stator. Check coil for short circuit to ground using a multimeter: Replace the complete stator if short circuit to ground is detected. Check brake voltage (see "defective rectifier, voltage too low").
	Wiring defective or incorrect	 Check and correct. Check cable for continuity using a multimeter: Replace the complete stator if a cable is defective.
	Defective or incorrect rectifier	 Measure rectifier DC voltage using a multimeter. If DC voltage is zero: Check AC rectifier voltage. If AC voltage is zero: Switch on power supply. Check fuse. Check wiring. If AC voltage is OK: Check rectifier. Replace the defective rectifier. If DC voltage is too low: Check rectifier. If diode is defective, use a suitable new rectifier. If diode is defective, use a suitable new rectifier. If diode is defective, use a suitable new rectifier. If the rectifier defect occurs again, replace the entire stator, even if you cannot find any fault between turns or short circuit to ground. The fault may occur later during heating-up.
	Incorrect micro-switch wiring	Check the wiring of the micro-switch and correct it.
	Micro-switch incor- rectly set	Replace the complete stator and make a complaint about the setting of the micro-switch to the manufacturer.
Brake cannot be released, air gap is not zero	Air gap "s _L " is too large	 For adjustable brakes: Readjust air gap. For non-adjustable brakes: Replace all rotors.

INTORQ

Fault	Cause	Remedy
Rotor cannot rotate freely	Air gap "s _L " too small	Readjust the air gap "s _L " ([[]] 28).
Rotor thickness too small	Rotor has not been replaced in time	Replace the rotor (1 45).
Voltage is not zero during functional	Incorrect micro-switch wiring	Check and correct the wiring of the micro-switch.
test (6.2.2 or 6.2.3)	Micro-switch defective or incorrectly set	Replace the complete stator and return the defective complete stator to the manufacturer.
Voltage too high	Brake voltage does not match the rectifier	Adjust rectifier and brake voltage to each other.
Voltage too low	Brake voltage does not match the rectifier	Adjust rectifier and brake voltage to each other.
	Defective rectifier diode	Replace defective rectifier with a suitable undamaged one.
AC voltage is not mains voltage	Fuse is missing or defective	Select a connection with proper fusing.
	Incorrect micro-switch wiring	Check and correct the wiring of the micro-switch.
	Micro-switch defective or incorrectly set	Replace the complete stator and return the defective complete stator to the manufacturer.

Notes

Notes

- *a* +49 5154 70534-200 *b* → +49 5154 70534-200
- ≡ info@intorq.com
- □ 应拓柯制动器(上海)有限责任公司
 INTORQ (Shanghai) Co., Ltd.
 上海市浦东新区泥城镇新元南路 600 号
 6 号楼一楼 B 座
 No. 600, Xin Yuan Nan Road,
 Building No. 6 / Zone B
 Nicheng town, Pudong
 201306 Shanghai
 186 21 20363-810
 +86 21 20363-805
- INTORQ US Inc.
 USA
 300 Lake Ridge Drive SE

☐ info@cn.intorq.com

- Smyrna, GA 30082, USA 🖀 +1 678 236-0555
- → +1 678 309-1157
- info@us.intorq.com
- INTORQ India Private Limited India
 Plot No E-7/3
 Chakan Industrial Area, Phase 3
 Nighoje, Taluka - Khed
 Pune, 410501, Maharashtra
 +91 2135625500
- info@intorq.in